scholarly journals An Adjuvanted, Tetravalent Dengue Virus Purified Inactivated Vaccine Candidate Induces Long-Lasting and Protective Antibody Responses Against Dengue Challenge in Rhesus Macaques

2015 ◽  
Vol 92 (4) ◽  
pp. 698-708 ◽  
Author(s):  
Stefan Fernandez ◽  
Stephen J. Thomas ◽  
Rafael De La Barrera ◽  
Rawiwan Im-erbsin ◽  
Richard G. Jarman ◽  
...  
2011 ◽  
Vol 18 (4) ◽  
pp. 523-532 ◽  
Author(s):  
Stefan Fernandez ◽  
Emily D. Cisney ◽  
Alexander P. Tikhonov ◽  
Barry Schweitzer ◽  
Robert J. Putnak ◽  
...  

ABSTRACTDengue is a mosquito-borne infection caused by four distinct serotypes of dengue virus, each appearing cyclically in the tropics and subtropics along the equator. Although vaccines are currently under development, none are available to the general population. One of the main impediments to the successful advancement of these vaccines is the lack of well-defined immune correlates of protection. Here, we describe a protein microarray approach for measuring antibody responses to the complete viral proteome comprised of the structural (capsid, membrane, and envelope) and nonstructural (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) components of all four dengue virus serotypes (1 to 4). We examined rhesus macaques vaccinated with tetravalent vaccines consisting of live-attenuated virus (LAV) or purified inactivated virus (PIV), followed by boosting with LAV and challenging with wild-type dengue virus. We detected temporal increases in antibodies against envelope proteins in response to either vaccine, while only the PIV/LAV vaccination strategy resulted in anticapsid antibodies. In contrast to results from vaccination, naïve macaques challenged with wild-type viruses of each serotype demonstrated a balanced response to nonstructural and structural components, including responses against the membrane protein. Our results demonstrate discriminating details concerning the nature of antibody responses to dengue virus at the proteomic level and suggest the usefulness of this information for vaccine development.


2020 ◽  
Author(s):  
Laura Solforosi ◽  
Harmjan Kuipers ◽  
Sietske K. Rosendahl Huber ◽  
Joan E.M. van der Lubbe ◽  
Liesbeth Dekking ◽  
...  

AbstractSafe and effective coronavirus disease (COVID)-19 vaccines are urgently needed to control the ongoing pandemic. While single-dose vaccine regimens would provide multiple advantages, two doses may improve the magnitude and durability of immunity and protective efficacy. We assessed one- and two-dose regimens of the Ad26.COV2.S vaccine candidate in adult and aged non-human primates (NHP). A two-dose Ad26.COV2.S regimen induced higher peak binding and neutralizing antibody responses compared to a single dose. In one-dose regimens neutralizing antibody responses were stable for at least 14 weeks, providing an early indication of durability. Ad26.COV2.S induced humoral immunity and Th1 skewed cellular responses in aged NHP that were comparable to adult animals. Importantly, aged Ad26.COV2.S-vaccinated animals challenged 3 months post -dose 1 with a SARS-CoV-2 spike G614 variant showed near complete lower and substantial upper respiratory tract protection for both regimens. These are the first NHP data showing COVID-19 vaccine protection against the SARS-CoV-2 spike G614 variant and support ongoing clinical Ad26.COV2.S development.SummaryCOVID-19 vaccines are urgently needed and while single-dose vaccines are preferred, two-dose regimens may improve efficacy. We show improved Ad26.COV2.S immunogenicity in non-human primates after a second vaccine dose, while both regimens protected aged animals against SARS-CoV-2 disease.


2017 ◽  
Vol 91 (9) ◽  
Author(s):  
Gerard Zurawski ◽  
Xiaoying Shen ◽  
Sandra Zurawski ◽  
Georgia D. Tomaras ◽  
David C. Montefiori ◽  
...  

ABSTRACT We compared the HIV-1-specific immune responses generated by targeting HIV-1 envelope protein (Env gp140) to either CD40 or LOX-1, two endocytic receptors on dendritic cells (DCs), in rhesus macaques primed with a poxvirus vector (NYVAC-KC) expressing Env gp140. The DC-targeting vaccines, humanized recombinant monoclonal antibodies fused to Env gp140, were administered as a boost with poly-ICLC adjuvant either alone or coadministered with the NYVAC-KC vector. All the DC-targeting vaccine administrations with poly-ICLC increased the low-level serum anti-Env IgG responses elicited by NYVAC-KC priming significantly more (up to a P value of 0.01) than in a group without poly-ICLC. The responses were robust and cross-reactive and contained antibodies specific to multiple epitopes within gp140, including the C1, C2, V1, V2, and V3, C4, C5, and gp41 immunodominant regions. The DC-targeting vaccines also elicited modest serum Env-specific IgA responses. All groups gave serum neutralization activity limited to tier 1 viruses and antibody-dependent cytotoxicity responses (ADCC) after DC-targeting boosts. Furthermore, CD4+ and CD8+ T cell responses specific to multiple Env epitopes were strongly boosted by the DC-targeting vaccines plus poly-ICLC. Together, these results indicate that prime-boost immunization via NYVAC-KC and either anti-CD40.Env gp140/poly-ICLC or anti-LOX-1.Env gp140/poly-ICLC induced balanced antibody and T cell responses against HIV-1 Env. Coadministration of NYVAC-KC with the DC-targeting vaccines increased T cell responses but had minimal effects on antibody responses except for suppressing serum IgA responses. Overall, targeting Env to CD40 gave more robust T cell and serum antibody responses with broader epitope representation and greater durability than with LOX-1. IMPORTANCE An effective vaccine to prevent HIV-1 infection does not yet exist. An approach to elicit strong protective antibody development is to direct virus protein antigens specifically to dendritic cells, which are now known to be the key cell type for controlling immunity. In this study, we have tested in nonhuman primates two prototype vaccines engineered to direct the HIV-1 coat protein Env to dendritic cells. These vaccines bind to either CD40 or LOX-1, two dendritic cell surface receptors with different functions and tissue distributions. We tested the vaccines described above in combination with attenuated virus vectors that express Env. Both vaccines, but especially that delivered via CD40, raised robust immunity against HIV-1 as measured by monitoring potentially protective antibody and T cell responses in the blood. The safety and efficacy of the CD40-targeted vaccine justify further development for future human clinical trials.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Aleksandar Antanasijevic ◽  
Leigh M. Sewall ◽  
Christopher A. Cottrell ◽  
Diane G. Carnathan ◽  
Luis E. Jimenez ◽  
...  

AbstractEngineered ectodomain trimer immunogens based on BG505 envelope glycoprotein are widely utilized as components of HIV vaccine development platforms. In this study, we used rhesus macaques to evaluate the immunogenicity of several stabilized BG505 SOSIP constructs both as free trimers and presented on a nanoparticle. We applied a cryoEM-based method for high-resolution mapping of polyclonal antibody responses elicited in immunized animals (cryoEMPEM). Mutational analysis coupled with neutralization assays were used to probe the neutralization potential at each epitope. We demonstrate that cryoEMPEM data can be used for rapid, high-resolution analysis of polyclonal antibody responses without the need for monoclonal antibody isolation. This approach allowed to resolve structurally distinct classes of antibodies that bind overlapping sites. In addition to comprehensive mapping of commonly targeted neutralizing and non-neutralizing epitopes in BG505 SOSIP immunogens, our analysis revealed that epitopes comprising engineered stabilizing mutations and of partially occupied glycosylation sites can be immunogenic.


2007 ◽  
Vol 5 (6) ◽  
pp. 625-641 ◽  
Author(s):  
Brian Burke ◽  
Susan Barnett

2011 ◽  
Vol 41 (2) ◽  
pp. 307-313
Author(s):  
Maria do Carmo Cilento ◽  
Edviges Maristela Pituco ◽  
Ricardo Spacagna Jordão ◽  
Cláudia Pestana Ribeiro ◽  
Moacir Marchiori Filho ◽  
...  

An experimental inactivated vaccine against bovine herpesvirus-1 (BoHV-1) was produced aiming to evaluate the systemic and local antibody responses in 12 seronegative heifers, after vaccination and revaccination. Serum samples were submitted to virus neutralization assay and to ELISA test for detection of IgG1 and IgG2 isotypes. Nasal secretion samples were submitted to the same ELISA test for detection of IgG1 and IgG2 isotypes. The results showed that moderate to high neutralizing titres and IgG1 and IgG2 antibody responses were induced after the second vaccination in the serum and in nasal secretions up to 114 days post vaccination. IgG2 antibodies were the prevalent isotype for most of the post-vaccination period. The results indicate that BoHV-1 experimental inactivated vaccine elicited potentially protective IgG1 and IgG2 antibody levels, both in the systemic and mucosal compartments.


2018 ◽  
Vol 93 (3) ◽  
Author(s):  
Karen V. Kibler ◽  
Benedikt Asbach ◽  
Beatriz Perdiguero ◽  
Juan García-Arriaza ◽  
Nicole L. Yates ◽  
...  

ABSTRACT As part of the continuing effort to develop an effective HIV vaccine, we generated a poxviral vaccine vector (previously described) designed to improve on the results of the RV144 phase III clinical trial. The construct, NYVAC-KC, is a replication-competent, attenuated recombinant of the vaccinia virus strain NYVAC. NYVAC is a vector that has been used in many previous clinical studies but is replication deficient. Here, we report a side-by-side comparison of replication-restricted NYVAC and replication-competent NYVAC-KC in a nonhuman primate study, which utilized a prime-boost regimen similar to that of RV144. NYVAC-C and NYVAC-C-KC express the HIV-1 antigens gp140, and Gag/Gag-Pol-Nef-derived virus-like particles (VLPs) from clade C and were used as the prime, with recombinant virus plus envelope protein used as the boost. In nearly every T and B cell immune assay against HIV-1, including neutralization and antibody binding, NYVAC-C-KC induced a greater immune response than NYVAC-C, indicating that replication competence in a poxvirus may improve upon the modestly successful regimen used in the RV144 clinical trial. IMPORTANCE Though the RV144 phase III clinical trial showed promise that an effective vaccine against HIV-1 is possible, a successful vaccine will require improvement over the vaccine candidate (ALVAC) used in the RV144 study. With that goal in mind, we have tested in nonhuman primates an attenuated but replication-competent vector, NYVAC-KC, in direct comparison to its parental vector, NYVAC, which is replication restricted in human cells, similar to the ALVAC vector used in RV144. We have utilized a prime-boost regimen for administration of the vaccine candidate that is similar to the one used in the RV144 study. The results of this study indicate that a replication-competent poxvirus vector may improve upon the effectiveness of the RV144 clinical trial vaccine candidate.


Sign in / Sign up

Export Citation Format

Share Document