scholarly journals Collection Efficiency and Ice Accretion Characteristics of Two Full Scale And One 1/4 Scale Business Jet Horizontal Tails

Author(s):  
Colin S. Bidwell ◽  
Michael Papadakis
1983 ◽  
Vol 4 ◽  
pp. 174-179
Author(s):  
P. McComber ◽  
J.-L. Laforte ◽  
D. Bouchard ◽  
D. D. Nguyen

There is at present a need to develop a better technique for measuring the rate of icing on structures such as, for example, overhead transmission lines. For aircraft and helicopter icing, the most widely used method of measurement is the rotating cylinder. However, for measuring the icing of structures, this method is difficult to apply and also less accurate due to lower wind velocities. Different approaches are now being developed using fixed cylinders.Icing tests were conducted with fixed and rotating cylinders in a wind tunnel. The rate of icing was obtained through measurements of volume, accretion cross-section and time of deposition. Tests were made using five different liquid water contents and droplet diameter spectra, and four cylinder diameters, keeping the wind velocity and temperature constant. The rate of icing is presented as a function of the diameters of the fixed and rotating cylinders for each of the liquid water contents tested. Results indicate that at lower wind velocities the accretion rate is overestimated for the smaller rotating cylinders. This difference is probably due to the variation of the collection efficiency with diameter. From these results it is suggested that the rate of ice accretion on structures should be based on at least two fixed cylinders of different small sizes in order to take into account the effect of the collection efficiency.


Author(s):  
Wei Dong ◽  
JianJun Zhu ◽  
Rui Wang ◽  
Yong Chen

The physical processes involved in ice accretion on the rotating blade are complex. It is important to develop high fidelity numerical method and simulate the icing process on the blade under icing conditions. This paper presents a numerical study on the icing process on the rotating blade. The flow field around the blade is obtained using ANSYS FLUENT. The trajectories of supercooled water droplets and the collection efficiency are calculated by Eulerian approach. Heat and mass balance on the rotating blade surface is taken into account in icing process simulations. The NASA Rotor 67 blade is chosen as the computational model. The collection efficiency on the blade surface is computed and the impingement characteristics are analyzed. The 3D icing accretion on Rotor 67 blade is predicted at design point. The ice shapes of accretion time of 5s, 10s and 15s are simulated and the ice shapes at different span positions of the rotating blade are compared.


Author(s):  
Parthiv N. Shah ◽  
Gordon Pfeiffer ◽  
Rory Davis ◽  
Thomas Hartley ◽  
Zoltán Spakovszky

This paper presents the design and full-scale ground-test demonstration of an engine air-brake (EAB) nozzle that uses a deployable swirl vane mechanism to switch the operation of a turbofan's exhaust stream from thrust generation to drag generation during the approach and/or descent phase of flight. The EAB generates a swirling outflow from the turbofan exhaust nozzle, allowing an aircraft to generate equivalent drag in the form of thrust reduction at a fixed fan rotor speed. The drag generated by the swirling exhaust flow is sustained by the strong radial pressure gradient created by the EAB swirl vanes. Such drag-on-demand is an enabler to operational benefits such as slower, steeper, and/or aeroacoustically cleaner flight on approach, addressing the aviation community's need for active and passive control of aeroacoustic noise sources and access to confined airports. Using NASA's technology readiness level (TRL) definitions, the EAB technology has been matured to a level of six, i.e., a fully functional prototype. The TRL-maturation effort involved design, fabrication, assembly, and ground-testing of the EAB's deployable mechanism on a full-scale, mixed-exhaust, medium-bypass-ratio business jet engine (Williams International FJ44-4A) operating at the upper end of typical approach throttle settings. The final prototype design satisfied a set of critical technology demonstration requirements that included (1) aerodynamic equivalent drag production equal to 15% of nominal thrust in a high-powered approach throttle setting (called dirty approach), (2) excess nozzle flow capacity and fuel burn reduction in the fully deployed configuration, (3) acceptable engine operability during dynamic deployment and stowing, (4) deployment time of 3–5 s, (5) stowing time under 0.5 s, and (6) packaging of the mechanism within a notional engine cowl. For a typical twin-jet aircraft application, a constant-speed, steep approach analysis suggests that the EAB drag could be used without additional external airframe drag to increase the conventional glideslope from 3 deg to 4.3 deg, with about 3 dB noise reduction at a fixed observer location.


Author(s):  
Parthiv N. Shah ◽  
Gordon Pfeiffer ◽  
Rory Davis ◽  
Thomas Hartley ◽  
Zoltán Spakovszky

This paper presents the design and full-scale ground-test demonstration of an engine air-brake (EAB) nozzle that uses a deployable swirl vane mechanism to switch the operation of a turbofan’s exhaust stream from thrust generation to drag generation during the approach and/or descent phase of flight. The EAB generates a swirling outflow from the turbofan exhaust nozzle, allowing an aircraft to generate equivalent drag in the form of thrust reduction at a fixed fan rotor speed. The drag generated by the swirling exhaust flow is sustained by the strong radial pressure gradient created by the EAB swirl vanes. Such drag-on-demand is an enabler to operational benefits such as slower, steeper, and/or aeroacoustically cleaner flight on approach, addressing the aviation community’s need for active and passive control of aeroacoustic noise sources and access to confined airports. Using NASA’s Technology Readiness Level (TRL) definitions, the EAB technology has been matured to a level of 6, i.e., a fully functional prototype. The TRL-maturation effort involved design, fabrication, assembly, and ground-testing of the EAB’s deployable mechanism on a full-scale, mixed-exhaust, medium-bypass-ratio business jet engine (Williams International FJ44-4A) operating at the upper end of typical approach throttle settings. The final prototype design satisfied a set of critical technology demonstration requirements that included (1) aerodynamic equivalent drag production equal to 15% of nominal gross thrust in a high-powered approach throttle setting (called dirty approach), (2) excess nozzle flow capacity and fuel burn reduction in the fully deployed configuration, (3) acceptable engine operability during dynamic deployment and stowing, (4) deployment time of 3–5 seconds, (5) stowing time under 0.5 second, and (6) packaging of the mechanism within a notional engine cowl. For a typical twin-jet aircraft application, a constant-speed, steep approach analysis suggests that the EAB drag could be used without additional external airframe drag to increase the conventional glideslope from 3 to 4.3 degrees, with about 3 dB noise reduction at a fixed observer location.


2012 ◽  
Vol 512-515 ◽  
pp. 754-757
Author(s):  
Xian Yi ◽  
Kai Chun Wang ◽  
Hong Lin Ma

A three dimensional numerical method and its computer codes, which are suitable to predict the process of horizontal axis wind turbine icing, are presented. The method is composed of the Multiple Reference Frame (MRF) method to calculate flowfield of air, an Eulerian method to compute collection efficiency and a three dimensional icing model companying with an iterative arithmetic for solving the model. Ice accretion on a 1.5 MW horizontal axis wind turbine is then computed with the numerical method, and characteristics of droplet collection efficiency and ice shape/type are obtained. The results show that ice on the hub and blade root is slight and it can be neglected comparing with ice near blade tip. From blade tip to root, ice becomes thinner and glaze ice may changes into rime ice.


Author(s):  
Hao Zhang ◽  
Chihyung Wen ◽  
Junwei Su

Droplet impingement is the basic module in both ice accretion and anti-icing numerical calculation. A three dimensional finite volume approach with the capacity of modeling the in-flight droplet impingement on a wide range of subsonic regime is therefore established in this research, using OpenFOAM®. The Eulerian model is applied to estimate the droplet flow field with the same computational grid sets as those of the air flow calculation. The roughness effect caused by ice accretion is considered in the wall function modeling. Thus, the collection efficiency could be investigated for further icing numerical simulations. This approach is validated on both cylinder and sphere benchmark cases. The results are compared with the corresponding experimental and LEWICE (LEWis ICE accretion program) simulation data.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Zhao Li ◽  
Guang-jun Yang ◽  
Xiao-yan Tong ◽  
Feng Jiang

The size of aircraft models that can be tested in icing wind tunnels is limited by the dimensions of the facilities in present; it is an effective method to replace the large model with a hybrid airfoil to carry out the experiment. A design method of multiple control points for hybrid airfoil based on the similarity of flow field in the leading edge of airfoil is proposed. Aiming at generating the full-scale flow field and ice accretion on the leading edge, multiobjective genetic optimization algorithm is used to design the hybrid airfoil under different conditions by combining the airfoil parameterization and solution of spatial constraint. Pressure tests of hybrid airfoils are carried out and compared with the leading edge pressure of the corresponding full-scale airfoils. The design and experimental results show that the pressure coefficient deviation between the hybrid airfoils designed and the corresponding full-scale airfoil in the 15% chord length range of the leading edge is within 4%. Finally, the vortex distribution and ice accretion process of the two airfoils were simulated by the unsteady Reynolds-averaged-Navier–Stokes (URANS) equations and multistep ice numerical method; it is shown that the hybrid airfoil can provide the same vortex distribution and ice accretion with the full-scale airfoil.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 627 ◽  
Author(s):  
Yan Li ◽  
Ce Sun ◽  
Yu Jiang ◽  
Fang Feng

In order to research the law of rime ice accretion on different scaling blades surface, a new rime ice scaling method was proposed in this research. According to previous research, there are three kinds of ice types on blade surfaces: rime ice, glaze ice and mixed ice. Under the condition of rime ice, both the freezing fraction and the coefficient of heat transfer between super-cold water droplets and blade are 100%. The heat transfer model of rime ice is simpler than that of glaze ice and mixed ice. In this research, the scaling parameters including flow field, water droplets, temperature, pressure and rotating parameters were defined. The Weber number (We) based on water film thickness as an important parameter was applied in this study. The rotating parameters including rotating speed and radius had been added into the icing scaling method. To verify the effectiveness of the new rime ice scaling method, icing wind tunnel tests were carried out. The NACA0018 airfoil was used for the test blade. Two kinds of scale chord blades were selected, the chord of full-scale blade was 200 mm and of subscale blade was 100 mm. The test temperature was −15 °C. The ice accretion on different scale blades surface were captured by high-speed camera and the icing shapes of different scaling blades were obtained. To quantitatively analyze the similar degree of icing shapes on different scale blades, an evaluation method which included similar degree (Sim) was established based on the typical characteristic parameters proposed by previous research. The results show that the icing shapes of subscale blades are similar to that of full-scale blades. The similar degree is between 75.22% and 93.01%. The icing wind tunnel test indicates that the new rime ice scaling method is an effective method to study the rime ice of large scale rotating blades. This study can be used as a reference for research on anti-icing and de-icing technologies for large-scale HAWTs (Horizontal Axis Wind Turbines).


Sign in / Sign up

Export Citation Format

Share Document