Numerical Simulation of Icing on the Rotating Blade

Author(s):  
Wei Dong ◽  
JianJun Zhu ◽  
Rui Wang ◽  
Yong Chen

The physical processes involved in ice accretion on the rotating blade are complex. It is important to develop high fidelity numerical method and simulate the icing process on the blade under icing conditions. This paper presents a numerical study on the icing process on the rotating blade. The flow field around the blade is obtained using ANSYS FLUENT. The trajectories of supercooled water droplets and the collection efficiency are calculated by Eulerian approach. Heat and mass balance on the rotating blade surface is taken into account in icing process simulations. The NASA Rotor 67 blade is chosen as the computational model. The collection efficiency on the blade surface is computed and the impingement characteristics are analyzed. The 3D icing accretion on Rotor 67 blade is predicted at design point. The ice shapes of accretion time of 5s, 10s and 15s are simulated and the ice shapes at different span positions of the rotating blade are compared.

Author(s):  
Hao Zhang ◽  
Chihyung Wen ◽  
Junwei Su

Droplet impingement is the basic module in both ice accretion and anti-icing numerical calculation. A three dimensional finite volume approach with the capacity of modeling the in-flight droplet impingement on a wide range of subsonic regime is therefore established in this research, using OpenFOAM®. The Eulerian model is applied to estimate the droplet flow field with the same computational grid sets as those of the air flow calculation. The roughness effect caused by ice accretion is considered in the wall function modeling. Thus, the collection efficiency could be investigated for further icing numerical simulations. This approach is validated on both cylinder and sphere benchmark cases. The results are compared with the corresponding experimental and LEWICE (LEWis ICE accretion program) simulation data.


2016 ◽  
Vol 851 ◽  
pp. 249-254 ◽  
Author(s):  
Muhammad S. Virk

Numerical study of atmospheric ice accretion on circular cylinders in duplex configuration has been carried out at different operating and geometric conditions. Analyses showed a difference in ice accretion on both cylinders, as streamline accumulated ice shapes were observed along front cylinder and irregular ice shapes were found along rear cylinder. Results also showed a change in accreted ice load and ice shape along rear cylinder with the change in distance between both cylinders. Parametric study at different droplet sizes and temperatures showed a variation in ice accretion. This prelimenary research work provides a useful base for better understanding and further investigation of atmospheric ice accretion on circular overhead conductors in duplex configuration, installed in cold climate of high north regions.


Author(s):  
Andi F. Sudarma ◽  
◽  
Muhammad Kholil ◽  
Subekti Subekti ◽  
Indra Almahdy

The effect of blade number on small Horizontal Axis Wind Turbine (HAWT) has been studied experimentally and numerically in this research. The turbine blade is made of a flat metal sheet and the tip was formed to shape a winglet. The 5-blades turbine was tested inside a wind tunnel for performance investigation at different wind speeds. The experiment was conducted under various wind speed, i.e. 3.5 m/s, 3.9 m/s, 4.3 m/s, 4.6 m/s dan 5 m/s. Furthermore, three wind turbines geometry with different blade number (3, 4, and 5 blades) were built for numerical study purpose by using Ansys Fluent and the results were compared to the experimental one. The results show that the blade number does increase the wind turbine torque and there is also more power generated from the turbine with more blade numbers since torque is related to pressure. Moreover, the winglet helps the blade to retain the flow and increases the pressure on the blade surface. However, the experimental measurements obtained were smaller than the numerical predictions about 50% on the average since more unidentified losses existed and not accounted for the calculation.


2019 ◽  
Vol 7 (1) ◽  
pp. 43-53
Author(s):  
Abbas Jassem Jubear ◽  
Ali Hameed Abd

The heat sink with vertically rectangular interrupted fins was investigated numerically in a natural convection field, with steady-state heat transfer. A numerical study has been conducted using ANSYS Fluent software (R16.1) in order to develop a 3-D numerical model.  The dimensions of the fins are (305 mm length, 100 mm width, 17 mm height, and 9.5 mm space between fins. The number of fins used on the surface is eight. In this study, the heat input was used as follows: 20, 40, 60, 80, 100, and 120 watts. This study focused on interrupted rectangular fins with a different arrangement and angle of the fins. Results show that the addition of interruption in fins in various arrangements will improve the thermal performance of the heat sink, and through the results, a better interruption rate as an equation can be obtained.


2021 ◽  
Vol 1741 ◽  
pp. 012008
Author(s):  
A A Kulikov ◽  
A V Ratushnyi ◽  
I A Kovaliov ◽  
A S Mandryka ◽  
A S Ignatiev

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Erik Buhmann ◽  
Sascha Diefenbacher ◽  
Engin Eren ◽  
Frank Gaede ◽  
Gregor Kasieczka ◽  
...  

AbstractAccurate simulation of physical processes is crucial for the success of modern particle physics. However, simulating the development and interaction of particle showers with calorimeter detectors is a time consuming process and drives the computing needs of large experiments at the LHC and future colliders. Recently, generative machine learning models based on deep neural networks have shown promise in speeding up this task by several orders of magnitude. We investigate the use of a new architecture—the Bounded Information Bottleneck Autoencoder—for modelling electromagnetic showers in the central region of the Silicon-Tungsten calorimeter of the proposed International Large Detector. Combined with a novel second post-processing network, this approach achieves an accurate simulation of differential distributions including for the first time the shape of the minimum-ionizing-particle peak compared to a full Geant4 simulation for a high-granularity calorimeter with 27k simulated channels. The results are validated by comparing to established architectures. Our results further strengthen the case of using generative networks for fast simulation and demonstrate that physically relevant differential distributions can be described with high accuracy.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2511
Author(s):  
Jintao Liu ◽  
Di Xu ◽  
Shaohui Zhang ◽  
Meijian Bai

This paper investigates the physical processes involved in the water filling and air expelling process of a pipe with multiple air valves under water slow filling condition, and develops a fully coupledwater–air two-phase stratified numerical model for simulating the process. In this model, the Saint-Venant equations and the Vertical Average Navier–Stokes equations (VANS) are respectively applied to describe the water and air in pipe, and the air valve model is introduced into the VANS equations of air as the source term. The finite-volume method and implicit dual time-stepping method (IDTS) with two-order accuracy are simultaneously used to solve this numerical model to realize the full coupling between water and air movement. Then, the model is validated by using the experimental data of the pressure evolution in pipe and the air velocity evolution of air valves, which respectively characterize the water filling and air expelling process. The results show that the model performs well in capturing the physical processes, and a reasonable agreement is obtained between numerical and experimental results. This agreement demonstrates that the proposed model in this paper offers a practical method for simulating water filling and air expelling process in a pipe with multiple air valves under water slow filling condition.


2013 ◽  
Vol 762 ◽  
pp. 253-260 ◽  
Author(s):  
Shan Yu ◽  
Jyrki Miettinen ◽  
Seppo Louhenkilpi

The steelmaking field has been seeing an increased demand of reducing hydrogen and nitrogen in liquid steel before casting. This is often accomplished by vacuum treatment. This paper focuses on developing a numerical model to investigate the removal of hydrogen and nitrogen from the melt of medium carbon steel in a commercial vacuum tank degasser. An activity coefficient model and the eddy-cell expression are implemented in the ANSYS FLUENT code to compute the activities of related elements and mass transfer coefficients of hydrogen and nitrogen in liquid steel. Several cases are simulated to assess the effect of gas flow rate and initial nitrogen content in liquid steel on degassing process and the calculated results are compared with industrial measured data.


2015 ◽  
Vol 126 ◽  
pp. 588-591 ◽  
Author(s):  
Rui Rong ◽  
Ke Cui ◽  
Zijun Li ◽  
Zhengren Wu

Sign in / Sign up

Export Citation Format

Share Document