Using Advanced Injection Timing and EGR to Improve DI Diesel Engine Efficiency at Acceptable NO and Soot Levels

Author(s):  
D.A. Kouremenos ◽  
D.T. Hountalas ◽  
K.B. Binder ◽  
A. Raab ◽  
M. H. Schnabel
Author(s):  
Kamran Poorghasemi ◽  
Fathollah Ommi ◽  
Vahid Esfahanian

In DI Diesel engines NO and Soot trade off is an important challenge for Engineers. In this paper, at first, multiple injection strategy will be introduced as a useful way to reduce both NO and Soot emissions simultaneously. Then the effect of injection pressure in post injection on the engine emissions will be studied. Investigations have been conducted on DI diesel engine. To evaluate the benefits of multiple injection strategies and to reveal combustion mechanism, modified three dimensional CFD code KIVA-3V was used. Results showed that using post injection with appropriate dwell between injection pulses can be effective in simultaneously reduction of emissions. Based on computation results, NO reduction formation mechanism is a single injection with retarded injection timing. It is shown that reduced soot formation is because of the fact that the soot producing rich regions at the fuel spray head are not replenished by new fuel when the injection is stopped and then restarted. Also increasing injection pressure in post injection will reduce the Soot emission dramatically while NO is in control and it is due to increasing fuel burning rate in post injection pulse.


2004 ◽  
Vol 126 (1) ◽  
pp. 13-20 ◽  
Author(s):  
Renshan Liu ◽  
Chao Zhang

A numerical study of NOx reduction for a Direct Injection (DI) Diesel engine with complex geometry, which includes intake/exhaust ports and moving valves, was carried out using the commercial computational fluid dynamics software KIVA-3v. The numerical simulations were conducted to investigate the effects of engine operating and geometrical parameters, including fuel injection timing, fuel injection duration, and piston bowl depth, on the NOx formation and the thermal efficiency of the DI Diesel engine. The tradeoff relationships between the reduction in NOx and the decrease in thermal efficiency were established.


2020 ◽  
pp. 346-346
Author(s):  
Ivan Grujic ◽  
Jovan Doric ◽  
Oday Abdullah ◽  
Nadica Stojanovic ◽  
Aleksandar Davinic

From an ecological aspect, the hydrogen has all properties to be a very good fuel for IC engines. However the high combustion speed, as well as the possibility of backfire, is inconvenient properties of port injection. In this paper, the influence of the injection timing on the IC engine working cycle parameters (pressure and temperature) was investigated deeply. The investigation, of the injection timing influence on the IC engine working cycle parameters, was performed numerically by application of ANSYS software. It was observed the geometry of the real engine with added pre chamber, in order of layer mixture formation and pressure damping, because of high combustion speed. The results are presented for four cases with different injection timing and the same spark timing. By earlier injection, the time for mixing rise as well as the possibility of homogenization and uniform mixture creation, in pre chamber and cylinder. This claim it is confirmed on the basis of obtaining pressure and pressure rise gradient, which are growing with earlier injection, because of hydrogen combustion characteristics in stoichiometric mixture. The higher pressures as well as the surface under the diagram are positive from the aspect of the engine efficiency. However, with the earlier injection, the values of the pressure rise gradient are higher than for the classic diesel engine. This means that this phenomena can cause brutal engine work from the aspect of mechanical stresses. However the value of the maximum pressure is smaller than this in a diesel engine, this is due to added pre chamber, which has decreased the compression ratio.


Sign in / Sign up

Export Citation Format

Share Document