Repairable System Reliability Prediction

2004 ◽  
Author(s):  
Ming-Wei Lu ◽  
Richard J. Rudy
2010 ◽  
Vol 118-120 ◽  
pp. 596-600
Author(s):  
Jian Xin Zhu ◽  
Xue Dong Chen ◽  
Shi Yi Bao

An innovative nuisance trip calculation method based on Markov model was proposed in this paper which was used to evaluate the effect of repairment on system reliability. By analysis of the availabilities of classic 1 out of 2 (1oo2) repairable system, a new definition of spurious trip was put forwarded where online repair was considered. Compared with the benefits obtained by online repairment, the repair-caused-nuisance-trip was analyzed in this paper. Numerical calculation revealed that the online repair is helpful for anti-spurious trip in 1oo2 redundant system. Dangerous failures, if not repaired or cannot be online fixed, have complex influence on system reliability. The dangerous failure is sometimes benefit for anti-spurious performance if it is not repaired. But Mean Time To Failure Spurious (MTTFs) reduces with the increase of dangerous failure provided that dangerous failure rate is bigger than safe failure rate. Meanwhile, the finding that common cause can reduce the chance of nuisance trip was also proposed in this paper, though the influence is too small to be neglected.


1990 ◽  
Vol 6 (3) ◽  
pp. 209-218 ◽  
Author(s):  
John S. Usher ◽  
Suraj M. Alexander ◽  
John D. Thompson

2016 ◽  
Vol 138 (5) ◽  
Author(s):  
Yao Cheng ◽  
Xiaoping Du

It is desirable to predict product reliability accurately in the early design stage, but the lack of information usually leads to the use of independent component failure assumption. This assumption makes the system reliability prediction much easier, but may produce large errors since component failures are usually dependent after the components are put into use within a mechanical system. The bounds of the system reliability can be estimated, but are usually wide. The wide reliability bounds make it difficult to make decisions in evaluating and selecting design concepts, during the early design stage. This work demonstrates the feasibility of considering dependent component failures during the early design stage with a new methodology that makes the system reliability bounds much narrower. The following situation is addressed: the reliability of each component and the distribution of its load are known, but the dependence between component failures is unknown. With a physics-based approach, an optimization model is established so that narrow bounds of the system reliability can be generated. Three examples demonstrate that it is possible to produce narrower system reliability bounds than the traditional reliability bounds, thereby better assisting decision making during the early design stage.


Sign in / Sign up

Export Citation Format

Share Document