Mapping Residual Stress Gradients in Automotive Components Via X-Ray Diffraction

Author(s):  
J. Pineault ◽  
M. Belassel ◽  
M. Brauss ◽  
J. Ladouceur
2007 ◽  
Vol 40 (4) ◽  
pp. 675-683 ◽  
Author(s):  
Cristy L. Azanza Ricardo ◽  
Mirco D'Incau ◽  
Paolo Scardi

A new procedure is proposed to determine sub-surface residual stress gradients by laboratory X-ray diffraction measurements at different depths using a chemical layer-removal technique. The standard correction algorithm for stress relaxation due to layer removal is improved by including corrections for X-ray absorption, and by the addition of constraints imposed by the mechanical equilibrium conditions. Besides correcting the data,i.e.providing more reliable through-thickness residual stress trends, the proposed procedure also provides an elastically compatible and plausible estimate of the residual stress inside the component, well beyond the measured region. The application of the model is illustrated for a set of Al-alloy components shot-peened at different Almen intensities. Results are compared with those given by `blind hole drilling', which is an independent and partly destructive method.


1999 ◽  
Vol 605 ◽  
Author(s):  
Hie Yang ◽  
H. Kahn ◽  
A.Q. He ◽  
S.M. Phillips ◽  
A.H. Heuer

AbstractLPCVD polysilicon thin films deposited between ∼550 and ∼600 °C have an equiaxed microstructure (resulting from crystallization of an initially amorphous deposit) and contain ∼200 MPa residual tensile stresses after deposition, whereas polysilicon films deposited above ∼600 °C have a columnar microstructure and contain ∼300 MPa residual compressive stresses after deposition. Both types of films also contain stress gradients.We have grown films containing multiple layers of polysilicon ("MultiPoly") by cycling the growth temperature between 570 and 615 °C. The multilayer films thus formed are comprised of alternating tensile and compressive layers, and by control of the thickness of the individual layers, the overall stress of the polysilicon can display any value between that of the tensile layer and that of the compressive layer. We have focussed on producing films with zero overall residual stress, as measured by wafer curvature, and have characterized the microstructures by transmission electron microscopy (TEM) and X-ray diffraction (XRD).Because of the stress gradients present in both layers, devices made from films with zero overall residual stress may show distortions after release. We have measured the stress gradients in each type of layer and can design films with zero overall stress and zero overall stress gradients. It is also possible to design films with any level of overall (tensile or compressive) stress but with controlled displacements upon release.


2021 ◽  
Vol 54 (6) ◽  
Author(s):  
Andreas Fischer ◽  
Sebastian Degener ◽  
Alexander Liehr ◽  
Thomas Niendorf

Surface treatments characterized by rapid heating and cooling (e.g. laser hardening) can induce very steep residual stress gradients in the direct vicinity of the area being treated. These gradients cannot be characterized with sufficient accuracy by means of the classical sin2Ψ approach applying angle-dispersive X-ray diffraction. This can be mainly attributed to limitations of the material removal method. In order to resolve residual stress gradients in these regions without affecting the residual stress equilibrium, another angle-dispersive approach, i.e. the universal plot method, can be used. A novel combination of the two approaches (sin2Ψ and universal plot) is introduced in the present work. Prevailing limits with respect to profiles as a function of depth can be overcome and, thus, high-resolution surface layer characterization is enabled. The data obtained are discussed comprehensively in comparison with results elaborated by energy-dispersive X-ray diffraction measurements.


1991 ◽  
Vol 69 (12) ◽  
pp. 8111-8118 ◽  
Author(s):  
Satish I. Rao ◽  
Baoping He ◽  
C. R. Houska ◽  
K. Grabowski

Author(s):  
Fabian Jaeger ◽  
Alessandro Franceschi ◽  
Holger Hoche ◽  
Peter Groche ◽  
Matthias Oechsner

AbstractCold extruded components are characterized by residual stresses, which originate from the experienced manufacturing process. For industrial applications, reproducibility and homogeneity of the final components are key aspects for an optimized quality control. Although striving to obtain identical deformation and surface conditions, fluctuation in the manufacturing parameters and contact shear conditions during the forming process may lead to variations of the spatial residual stress distribution in the final product. This could lead to a dependency of the residual stress measurement results on the relative axial and circumferential position on the sample. An attempt to examine this problem is made by the employment of design of experiments (DoE) methods. A statistical analysis of the residual stress results generated through X-Ray diffraction is performed. Additionally, the ability of cold extrusion processes to generate uniform stress states is analyzed on specimens of austenitic stainless steel 1.4404 and possible correlations with the pre-deformed condition are statistically examined. Moreover, the influence of the coating, consisting of oxalate and a MoS2 based lubricant, on the X-Ray diffraction measurements of the surface is investigated.


2010 ◽  
Vol 135 ◽  
pp. 238-242
Author(s):  
Yue Ming Liu ◽  
Ya Dong Gong ◽  
Wei Ding ◽  
Ting Chao Han

In this paper, effective finite element model have been developed to simulation the plastic deformation cutting in the process for a single particle via the software of ABAQUS, observing the residual stress distribution in the machined surface, the experiment of grinding cylindrical workpiece has been brought in the test of super-high speed grinding, researching the residual stress under the machined surface by the method of X-ray diffraction, which can explore the different stresses from different super-high speed in actual, and help to analyze the means of reducing the residual stresses in theory.


Sign in / Sign up

Export Citation Format

Share Document