Potential of a Low Pressure Drop Filter Concept for Direct Injection Gasoline Engines to Reduce Particulate Number Emission

Author(s):  
Takehide Shimoda ◽  
Yoshitaka Ito ◽  
Chika Saito ◽  
Takahiko Nakatani ◽  
Yukinari Shibagaki ◽  
...  
Author(s):  
Jeongyong Choi ◽  
Sridev Satpathy ◽  
John Hoard ◽  
Daniel Styles ◽  
Chih-Kuang Kuan

In recent years, many engine manufacturers have turned to downsizing and boosting of gasoline engines in order to meet the ever more stringent fuel economy and emissions regulations. With an increase in the number of turbocharged gasoline engines, solutions are required to manage knock under a range of operating conditions. The charge air cooler has been introduced to mitigate knock. Moreover, the engine is required to operate with spark retard and/or boost reduction to provide knock reduction leading to reduced fuel economy. Under some operating conditions water can condense in the charge air cooler (CAC). Corrugated plate separators have been widely used in gas-water separation and oil-water separation in many industries including marine diesel engines. However, this sort of separator has not been applied to gasoline engines in vehicles to separate the condensation in the charged air. In this paper, a 1-D condensation model to estimate the potential amount of water condensation and entrainment from the charge air coolers is presented. An approach to designing a unit to separate condensation in the flow from the charge air cooler while maintaining a low pressure drop is described. The design approach provides correlations of separator geometries versus separation and pressure drop performance. The study is developed using a 3-D computational model for analyzing charge air and condensation flow. The model results of the 1-D condensation model and the 3-D computational model have been validated by experiments on an engine-dynamometer based test cell. The set-up incorporates a 4 cylinder gasoline direct injection (GDI) turbocharged engine. An air-to-air charge air cooler is mounted under the engine. The intake air for the engine is supplied using a combustion air unit which enables the operators to control the temperature and humidity. Test conditions have been identified to demonstrate the phenomenon of CAC water condensation. Measurements of water condensation and motion through the system confirm the results of models. A separator has been designed that achieves high separation efficiency and low pressure drop.


2002 ◽  
Author(s):  
Min Xu ◽  
David Porter ◽  
Chao Daniels ◽  
Gus Panagos ◽  
James Winkelman ◽  
...  

2013 ◽  
Author(s):  
Yoshitaka Ito ◽  
Takehide Shimoda ◽  
Takashi Aoki ◽  
Yukinari Shibagaki ◽  
Kazuya Yuuki ◽  
...  

2021 ◽  
pp. 131781
Author(s):  
Youngkyun Jung ◽  
Young Gun Ko ◽  
In Wook Nah ◽  
Ung Su Choi

2008 ◽  
Vol 587-588 ◽  
pp. 810-814 ◽  
Author(s):  
Susana Dias ◽  
Fernando A. Costa Oliveira ◽  
C. Henriques ◽  
F.R. Ribeiro ◽  
Carmen M. Rangel ◽  
...  

The reactors used for Selective Catalytic Reduction (SCR) of NOx require low pressure drop structured catalyst packing. Structured packings, such as ceramic foams, are gaining increasing interest for application in low pressure drop reactors, membrane reactors and catalytic distillation units. In this work, cobalt ion exchanged mordenite (Co-HMOR)-coated cordierite-based foams produced by the replication method were evaluated for catalytic reduction of NOx with methane. The addition of 0.3 wt.% Pd to 2 wt.% Co-HMOR leads to a material that can convert 50 % NOx to N2 at 450 °C in a reaction mixture containing 2000 ppm CH4, 1000 ppm NOx, 5 % O2 and balance helium, at GHSV=17000 h-1. Although in an early stage of development, an efficient coating procedure was explored and different ways of exchange of Co and Pd cations into mordenite (Si/Al=10) were studied. Additions of 2 wt.% fumed silica enhanced adhesion of the zeolite onto the ceramic foam. Pd-exchanged Co-HMOR showed to be very sensitive to steam. A 50 % decrease in NOx conversion to N2 was observed after Pd/Co-HMOR samples were exposed at 450 °C to a reaction mixture containing 2 vol% H2O. Although further research is needed to ascertain the mechanism of this deactivation behaviour, agglomeration of Pd forming PdO particles is envisaged.


2019 ◽  
Vol 212 ◽  
pp. 699-708 ◽  
Author(s):  
De-Qiang Chang ◽  
Chi-Yu Tien ◽  
Chien-Yuan Peng ◽  
Min Tang ◽  
Sheng-Chieh Chen

Author(s):  
S. Kumar ◽  
S. Jayanti

In this paper, we present experimental studies of electrochemical performance of an all-vanadium redox flow battery cell employing an active area of 103 cm2, activated carbon felt, and a novel flow field, which ensures good electrolyte circulation at low pressure drops. Extended testing over 151 consecutive charge/discharge cycles has shown steady performance with an energy efficiency of 84% and capacity fade of only 0.26% per cycle. Peak power density of 193 mW cm−2 has been obtained at an electrolyte circulation rate of 114 ml min−1, which corresponds to stoichiometric factor of 4.6. The present configuration of the cell shows 20% improved in peak power and 30% reduction in pressure drop when compared to a similar cell with a different electrode and a serpentine flow field.


AIChE Journal ◽  
2019 ◽  
Vol 65 (3) ◽  
pp. 1126-1133 ◽  
Author(s):  
Seyyed Mahdi Hosseini ◽  
Kiyanoosh Razzaghi ◽  
Farhad Shahraki

Sign in / Sign up

Export Citation Format

Share Document