Analysis of Thermal and Chemical Effects on Negative Valve Overlap Period Energy Recovery for Low-Temperature Gasoline Combustion

2015 ◽  
Vol 8 (5) ◽  
pp. 2227-2239 ◽  
Author(s):  
Isaac Ekoto ◽  
Brian Peterson ◽  
James Szybist ◽  
William Northrop
2019 ◽  
pp. 146808741986754
Author(s):  
Hanho Yun ◽  
Cherian Idicheria ◽  
Paul Najt

Engines operating in low temperature combustion during positive valve overlap operation offer significant benefits of high fuel economy over the low temperature combustion during negative valve overlap operation. Significant efficiency improvement was achieved by the increased gamma and lower pumping loss. However, NOx emissions were increased due to reliance on the flame-induced combustion. In this study, the corona ignition system was evaluated to reduce NOx emissions during positive valve overlap operation while maintaining the benefit of efficiency gain. The tests were performed in a 2.2-L multi-cylinder engine. The results show that the ignition delay is always shorter with the corona ignition system than with the spark plug. The corona ignition system is able to support stable combustion (coefficient of variation of indicated mean effective pressure <3%) in a lower load during positive valve overlap operation than the spark plug, which gives us additional efficiency benefit. Since the corona ignition system promotes simultaneous ignition of the mixture at multiple locations in the combustion chamber as opposed to ignition being limited to the spark gap channel, the dependence of the flame burn for stable combustion during positive valve overlap operation minimizes, which leads to lower NOx emissions over the spark plug.


2019 ◽  
Vol 22 (1) ◽  
pp. 165-183 ◽  
Author(s):  
Oudumbar Rajput ◽  
Youngchul Ra ◽  
Kyoung-Pyo Ha ◽  
You-Sang Son

Engine performance and emissions of a six-stroke gasoline compression ignition engine with a wide range of continuously variable valve duration control were numerically investigated at low engine load conditions. For the simulations, an in-house three-dimensional computational fluid dynamics code with high-fidelity physical sub-models was used, and the combustion and emission kinetics were computed using a reduced kinetics mechanism for a 14-component gasoline surrogate fuel. Variation of valve timing and duration was considered under both positive valve overlap and negative valve overlap including the rebreathing of intake valves via continuously variable valve duration control. Close attention was paid to understand the effects of two additional strokes of the engine cycle on the thermal and chemical conditions of charge mixtures that alter ignition, combustion and energy recovery processes. Double injections were found to be necessary to effectively utilize the additional two strokes for the combustion of overly mixed lean charge mixtures during the second power stroke. It was found that combustion phasing in both power strokes is effectively controlled by the intake valve closure timing. Engine operation under negative valve overlap condition tends to advance the ignition timing of the first power stroke but has minimal effect on the ignition timing of second power stroke. Re-breathing was found to be an effective way to control the ignition timing in second power stroke at a slight expense of the combustion efficiency. The operation of a six-stroke gasoline compression ignition engine could be successfully simulated. In addition, the operability range of the six-stroke gasoline compression ignition engine could be substantially extended by employing the continuously variable valve duration technique.


Author(s):  
Elliott A. Ortiz-Soto ◽  
Jiri Vavra ◽  
Aristotelis Babajimopoulos

Increased residual levels in Homogeneous Charge Compression Ignition (HCCI) engines employing valve strategies such as recompression or negative valve overlap (NVO) imply that accurate estimation of residual gas fraction (RGF) is critical for cylinder pressure heat release analysis. The objective of the present work was to evaluate three residual estimation methods and assess their suitability under naturally aspirated and boosted HCCI operating conditions: i) the Simple State Equation method employs the Ideal Gas Law at exhaust valve closing (EVC); ii) the Mirsky method assumes isentropic exhaust process; and iii) the Fitzgerald method models in-cylinder temperature from exhaust valve opening (EVO) to EVC by accounting for heat loss during the exhaust process and uses measured exhaust temperature for calibration. Simulations with a calibrated and validated “virtual engine” were performed for representative HCCI operating conditions of engine speed, fuel-air equivalence ratio, NVO and intake pressure (boosting). The State Equation method always overestimated RGF by more than 10%. The Mirsky method was most robust, with average errors between 3–5%. The Fitzgerald method performed consistently better, ranging from no error to 5%, where increased boosting caused the largest discrepancies. A sensitivity study was also performed and determined that the Mirsky method was most robust to possible pressure and temperature measurement errors.


2020 ◽  
Vol 257 ◽  
pp. 114018 ◽  
Author(s):  
Jacek Hunicz ◽  
Maciej Mikulski ◽  
Michal S. Geca ◽  
Arkadiusz Rybak

Author(s):  
Sok Ratnak ◽  
Jin Kusaka ◽  
Yasuhiro Daisho ◽  
Kei Yoshimura ◽  
Kenjiro Nakama

Gasoline Direct Injection Homogeneous Charge Compression (GDI-HCCI) combustion is achieved by closing early the exhaust valves for trapping hot residual gases combined with direct fuel injection. The combustion is chemically controlled by multi-point auto-ignition which its main combustion phase can be controlled by direct injection timing of fuel. This work investigates the effect of single pulse injection timing on a supercharged GDI-HCCI combustion engine by using a four-stroke single cylinder engine with a side-mounted direct fuel injector. Injection of primary reference fuel PRF90 under the near-stoichiometric-boosted condition is studied. The fuel is injected during negative valve overlap (NVO) or recompression period for fuel reformation under low oxygen concentration and the injection is retarded to intake stroke for the homogeneous mixture. It is found that the early fuel injection in NVO period advances the combustion phasing compared with the retarded injection in the intake stroke. Noticeable slower combustion rate from intake stroke fuel injection is obtained compared with the NVO injection due to charge cooling effect. Zero-dimensional combustion simulations with multiple chemical reaction mechanisms are simulated to provide chemical understanding from the effect of fuel injection timing on intermediate species generations. The species such as C2H4, C3H6, CH4, and H2 are found to be formed during the NVO injection period from the calculations. The effects of single pulse injection timings on combustion characteristics such pressure rise rate, combustion stability, and emissions are also discussed in this study.


Sign in / Sign up

Export Citation Format

Share Document