Effects of Intake Manifold Conditions on Dual-Fuel CNG-Diesel Combustion in a Light Duty Diesel Engine Operated at Low Loads

Author(s):  
Pablo Garcia Valladolid ◽  
Per Tunestal
2012 ◽  
Vol 614-615 ◽  
pp. 436-440
Author(s):  
Jia Yi Du ◽  
Hai Ling Li ◽  
Deng Pan Zhang ◽  
Yong Jia Lu

Based on Methanol and diesel special combustion mode, a control strategy of methanol/diesel dual fuel engine on turbocharged DI diesel engine was introduced according to different operation conditions. A method of judging engine load by measuring intake manifold pressure was put forward. Bicubic interpolation method was adopted to optimize the control MAP for ensuring the coincidence between look-up table data and actual conditions. The feasibility of the control strategy is verified by bench test. And the results of test show that the economic performance of this dual fuel engine got a considerable improvement.


Author(s):  
T. Lakshmanan ◽  
A. Khadeer Ahmed ◽  
G. Nagarajan

Gaseous fuels are good alternative fuels to improve the energy crisis of today’s situation due to its clean burning characteristics. However, the incidence of backfire and knock remains a significant barrier in commercialization. With the invention of latest technology, the above barriers are eliminated. One such technique is timed injection of water into the intake port. In the present investigation, acetylene was aspirated in the intake manifold of a single cylinder diesel engine, with a gas flow rate of 390 g/h, along with water injected in the intake port, to overcome the backfire and knock problems in gaseous dual fuel engine. The brake thermal efficiency and emissions such as NOx, smoke, CO, HC, CO2 and exhaust gas temperature were studied. Dual fuel operation of acetylene induction with injection of water results in lowered NOx emissions with complete elimination of backfire and knock at the expense of brake thermal efficiency.


Author(s):  
Jiafeng Sun ◽  
Joshua A. Bittle ◽  
Timothy J. Jacobs

Most studies comparing diesel/gasoline dual-fuel operation and single-fuel diesel operation in diesel engines center on time-averaged results. It seems few studies discuss differences in cyclic variability. Motivated by this, the present study evaluates the cyclic variability of combustion in both dual-fuel and single-fuel operations of a diesel engine. Steady-state tests were done on a medium duty diesel engine with conventional direct injection timings of diesel fuel into the cylinder at one speed and three loads. In addition to single-fuel (diesel) operation, dual-fuel (gasoline and diesel) operation was studied at increasing levels of gasoline fraction. Gasoline fuel is introduced via a fuel injector at a single location prior to the intake manifold (and EGR mixing location). Crank-angle resolved data including in-cylinder pressure and heat release rate obtained for around 150 consecutive cycles are used to assess cyclic variability. The sources of cyclic variability, namely the factors causing cyclic variability or influencing its magnitude, especially those related to cylinder charge amount and mixture preparation, are analyzed. Fuel spray penetration and cyclic variability of cylinder charging, overall A/F ratio, and fuel injection timing, tend to increase cyclic variability of combustion in dual-fuel operation. On the other hand, fuel type and fuel spray droplet size tend to increase cyclic variability in single-fuel operation. The cyclic variability in dual-fuel operation in this study is more serious than that in single-fuel operation, in terms of magnitude, indicated by metrics chosen to quantify it. Most measures of cyclic variability increase consistently with increasing gasoline fraction. Variations of gasoline amount and possibly gasoline low temperature heat release cause higher combustion variation in dual-fuel operation primarily by affecting premixed burning. Statistical methods such as probability density function, autocorrelation coefficient, return map, and symbol sequence statistics methods are used to check determinism. In general, the parameters studied do not show strong determinism, which suggests other parameters must be identified to establish determinism or the system is inherently stochastic. Regardless, dominant sequences and optimal sequence lengths can be identified.


2017 ◽  
Vol 18 (6) ◽  
pp. 943-950 ◽  
Author(s):  
Jeongwoo Lee ◽  
Sanghyun Chu ◽  
Jaegu Kang ◽  
Kyoungdoug Min ◽  
Hyunsung Jung ◽  
...  

Energy ◽  
2020 ◽  
Vol 194 ◽  
pp. 116844
Author(s):  
Pradeep Raju ◽  
Senthil Kumar Masimalai ◽  
Nataraj Ganesan ◽  
S.V. Karthic

2014 ◽  
Vol 591 ◽  
pp. 150-154 ◽  
Author(s):  
C. Dhanasekaran ◽  
G. Mohankumar

Over the past two decades considerable effort has been taken to develop and introduce new alternate source of energy for the conventional gasoline and diesel. Environmental pollution and uncertainty in cost of petroleum products are the principal driving forces for this movement. The major pollutants from an Diesel engine system are NOx, Smoke, particulate matter, Soot. Several alternative fuels were tried but all of them are carbon based fuels, therefore net carbon based pollutants cannot be reduced. One alternative to carbon-based fuels is hydrogen. Hydrogen a non-carbon fuel only can meet zero emission vehicles standards in future. Hydrogen can be commercially used as a fuel even though it is having a number of technical and economical barriers. Numerous techniques are available for use in C.I. engine such as dual fuel made, by using spark plug, glow plug, DEE as an ignition enhancer. Hydrogen was used in a diesel engine in the dual fuel mode-using diesel as an ignition source in neat form using DEE. In neat form the DEE was introduced in the manifold. In order to have a precise control of hydrogen flow and to avoid the backfire and pre – ignition problems hydrogen was injection in to intake manifold; DEE injection follows the hydrogen injection. DEE mixed with air and flows into the combustion chamber as DEE auto ignites first followed by hydrogen combustion. A single cylinder-four stroke water-cooled naturally aspirated constant speed D.I. diesel engine with a rated output of 3.7 kW at 1500 rpm was used for the experimental purpose. Measurements were taken with respect to the performance, combustion and emission studies.


2014 ◽  
Vol 70 (1) ◽  
Author(s):  
A. Supee ◽  
R. Mohsin ◽  
Z. A. Majid ◽  
M. I. Raiz

In Diesel-CNG (Compressed Natural Gas) Dual Fuel (DDF) system, CNG is generally inducted in the intake manifold by CNG injector which is mounted on the intake manifold whereas diesel fuel is directly injected into engine cylinder using existing diesel fuel injector system. Status quo of optimum CNG injector position on intake manifold will  provide better gaseous fuel mixing quality, produce high turbulence kinetic energy and thus improve the performance of the diesel engine under DDF system. Thus, under full load condition at 2750 rpm, the engine performance and exhaust gas emissions tests such as nitric oxides (NOx), carbon dioxide (CO2), carbon monoxide (CO) and hydrocarbon (HC) were conducted on a diesel engine under DDF system for optimization of CNG injector position. Four CNG injector position on intake manifold were selected and optimum position of CNG injector was found to be at "position 2" which results in higher power output and less exhaust gas emissions. Further analysis by Computational Fluid Dynamics (CFD) shows that CNG injector at "position 2" exhibit better quality of homogeneous CNG-air mixture and higher turbulence kinetic energy compared to other position. Based on the findings, an optimization of CNG injector position on intake manifold provide promising modification method due to the simple, cheaper and commercially acceptable.


Sign in / Sign up

Export Citation Format

Share Document