scholarly journals An Economical and Precise Cooling Model and Its Application in a Single-Cylinder Diesel Engine

2021 ◽  
Vol 11 (15) ◽  
pp. 6749
Author(s):  
Zhifeng Xie ◽  
Ao Wang ◽  
Zhuoran Liu

The cooling system is an important subsystem of an internal combustion engine, which plays a vital role in the engine’s dynamical characteristic, the fuel economy, and emission output performance at each speed and load. This paper proposes an economical and precise model for an electric cooling system, including the modeling of engine heat rejection, water jacket temperature, and other parts of the cooling system. This model ensures that the engine operates precisely at the designated temperature and the total power consumption of the cooling system takes the minimum value at some power proportion of fan and pump. Speed maps for the cooling fan and pump at different speeds and loads of engine are predicted, which can be stored in the electronic control unit (ECU). This model was validated on a single-cylinder diesel engine, called the DK32. Furthermore, it was used to tune the temperature of the water jacket precisely. The results show that in the common use case, the electric cooling system can save the power of 255 W in contrast with the mechanical cooling system, which is about 1.9% of the engine’s power output. In addition, the validation results of the DK32 engine meet the non-road mobile machinery China-IV emission standards.

2011 ◽  
Vol 282-283 ◽  
pp. 702-705 ◽  
Author(s):  
De Zhi Zhang ◽  
Ying Ai Jin ◽  
De Yuan Su ◽  
Qing Gao

With the increasing degree of the enhancement of engine, engine cooling system design is considered particularly important. This paper used an established three-dimensional model of an engine water jacket to study, and used UDF function in the two-phase flow of the CFD, describe the mathematical model and simulation the engine at different operating conditions, and get the water jacket flow rate transfer thermal process. Finally, the results of the relationship between the engine water jacket of boiling heat transfer and flow velocity have been studied, and the importance of using two-phase flow model has been summarized.


2021 ◽  
Vol 39 (2) ◽  
pp. 638-642
Author(s):  
Ermakov Andrey ◽  
Salakhov Rishat ◽  
Khismatullin Renat ◽  
Idiatullin Bulat

This paper studies the effect of the electrically-driven pump on improving the efficiency of internal combustion engine cooling systems. Numerical one-dimensional simulation of the system operation was performed according to the European transient cycle (ETC). The paper compares the cooling system with a belt-driven pump and electrically-driven pump. It was found that the electrically-driven cooling system not only could maintain a more stable coolant temperature, and also provided energy savings for the pump drive. It can be noted that the mechanically-driven cooling system has disproportionately high energy costs, unstable coolant temperature, so in case of sudden changes in operating modes, the built-in thermostat cannot keep it within two degrees Celsius. At high engine speeds and low load, the drive consumes too much power, and when thermostat is faulty and the coolant is overcooled, at low speeds and high load, the coolant is overheating. The paper also considers options with electric-driven pump with and without an enabled thermostat. With a working thermostat and electrically driven pump, the system consumes a little more energy, because the thermostat does not open fully and as a result, the pump speed is 8.2% higher than in a cooling system without a thermostat.


Author(s):  
M. Sina Mousavi ◽  
Siamak Mirfendereski ◽  
Jae Sung Park ◽  
Jongwan Eun

The United Arab Emirates (UAE) is significantly dependent on desalinated water and groundwater resource, which is expensive and highly energy intensive. Despite the scarce water resource, only 54% of the recycled water was reused in 2015. In this study, an “Oasis” complex comprised of Sustainable Farming Compartments (SFCs) was proposed for reusing treated wastewater to decrease the ambient temperature of the SFC via an evaporative cooling system. A prototype SFC with half the original scale (width = 1.8 m, depth = 1.5 m, front height = 1.2 m back height = 0.9 m) was designed, built, and tested in an environmentally controlled laboratory and field site to evaluate the feasibility and effectiveness of the SFC under the climatic conditions in Abu Dhabi. Based on the experimental results, the temperature drops obtained from the SFC in the laboratory and field site were 5 ̊C at initial relative humidity of 60% and 7- 15 ̊C at initial relative humidity of 50%, respectively. An energy simulation using dynamic numerical simulations was performed in comparison to the results of the experiment. The energy-based dynamic simulation shows good agreement with the experimental results. The total power consumption of the SFC system was approximately three and a half times lower than that of an electrical air conditioner.


2003 ◽  
Vol 125 (2) ◽  
pp. 563-571 ◽  
Author(s):  
G. Q. Zhang ◽  
D. N. Assanis

A flexible model for computing one-dimensional, unsteady manifold gas dynamics in single-cylinder spark-ignition and diesel engines has been developed. The numerical method applies an explicit, finite volume formulation and a shock-capturing total variation diminishing scheme. The numerical model has been validated against the method of characteristics for valve flows without combustion prior to coupling with combustion engine simulations. The coupling of the gas-dynamics model with single-cylinder, spark-ignition and diesel engine modules is accomplished using the graphical MATLAB-SIMULINK environment. Comparisons between predictions of the coupled model and measurements shows good agreement for both spark ignition and diesel engines. Parametric studies demonstrating the effect of varying the intake runner length on the volumetric efficiency of a diesel engine illustrate the model use.


Author(s):  
Hsien-Chin Su

In this study, an oscillating-fan cooling device using electromagnetic force has been proposed. The device consists of two oscillating-fans flapping back and forth. It requires only one electromagnet and two elastic blades with one magnet on each of them. The electromagnet and two elastic blades are situated on a base and arranged accordingly. And thus, the electromagnetic force generated by the electromagnet can actuate the blades. The main advantage of this cooling device compared to a rotary fan is its simple structure because there is no bearing and motor in the cooling device. Moreover, the simplicity of the device makes it a highly reliable and low cost cooling device. The driving current can be either DC PWM or AC under 8 V – 12 V so it is compatible to most electronic devices. The dimensions of the cooling device can be designed as small as 20 mm (L) * 30 mm (W) * 4 mm (H) and as large as 60 mm * 55 mm * 25 mm. For a cooling experiment, three cooling devices with the dimension of 50 mm * 50 mm * 15 mm were incorporated with a heat sink with the dimension of 190 mm * 110 mm * 15 m. The dummy heater dissipated 55W while the environmental temperature is 44.8 °C. The result showed that the dummy heater can be cooled from 120.7 °C to 69.3 °C while the total power consumption of the three cooling devices is 1.74 W. The result shows that the cooling device not only provides an outstanding cooling ability but also shows a great potential for structural reliability and design flexibility.


2013 ◽  
Vol 680 ◽  
pp. 327-332
Author(s):  
Yong Shuai Wang ◽  
Jing Yang ◽  
Xiang Jun Yu ◽  
Ke Li

As the important part of the internal-combustion engine, cylinder head bears high thermal loads and mechanical loads. In order to analyse the merits or defects of cylinder head cooling system , built the 3-D model of cylinder head, and analysed the heat transfer processes between cylinder head and cooling water by fluid-solid coupled simulation in STAR-CCM+. The pressure nephograms and velocity vector of cooling water in the water jacket, and the whole temperature distributions of cylinder head were acquired. And analysed separately the temperature fields of fire power faces and exhaust passages which were under high heat loads .According to the analysis results , the structrue of cylinder head water jacket was evaluated and corresponding suggestions was put forward.


2011 ◽  
Vol 291-294 ◽  
pp. 2328-2333
Author(s):  
Zhe Xin ◽  
Shun Xi Wang ◽  
Ke Peng Zhang ◽  
Zhao Jing Li ◽  
Feng Yun

In the research of flow and heat transfer of the diesel engine cooling system, the boundary condition determination was often a difficult problem. The paper calculated the flow velocity and convective heat transfer coefficient respectively for a six-cylinder diesel engine under different boundary conditions which including the water jacket wall as adiabatic condition, average temperature condition, and the boundary conditions from the solid-fluid coupling calculating. And the calculated values of the jacket wall temperatures were compared with that of test. The results showed that the simulation with solid-fluid coupling boundary conditions had better precision. Based on the research, an improved structure design was conducted for the six-cylinder diesel engine, the results of simulation showed that the average flow speed at the internal surface of water jacket could reach up to 0.5m/s, the flow symmetry in each jacket got improved, and the convective heat transfer coefficient could reach more than 2000 W/m2·K. The improved cooling system can meet the design requirements.


Author(s):  
Jagdish Nargunde ◽  
Chandrasekharan Jayakumar ◽  
Anubhav Sinha ◽  
Naeim A. Henein ◽  
Walter Bryzik ◽  
...  

An investigation was conducted on a 0.42 liter single cylinder diesel engine equipped with a common rail fuel injection system to evaluate the influence of the swirl motion on JP-8 fuel combustion. Engine tests were performed under steady state conditions of 5 bar IMEP and 1500 RPM. Two different swirl ratios of 1.44 and 7.12 were applied at injection pressures ranging from 400 to 1200 bar. The apparent rate of heat release (ARHR) curve is analyzed to determine the effect of swirl on combustible mixture formation, auto-ignition, premixed and diffusion controlled combustion fractions. An attempt is made to correlate between the swirl ratio and different combustion and emissions parameters at different injection pressures. The emissions included the gaseous fractions and particulates. Two types of particulate matter were measured: Accumulation mode particles (AMPs) and Nucleation mode particles (NMPs). The results indicate that ignition delay duration of JP-8 increases as the swirl ratio increases influencing the overall combustion process and engine out emissions.


2019 ◽  
Vol 18 (3) ◽  
pp. 248-255
Author(s):  
A. Yu. Fedorov

Many countries exploit a large number of armored vehicles, developed and manufactured dozens of years ago. Due to this there is a necessity of its continuous modernization. An object of the research is an internal combustion engine for a ground armored vehicle with a 12ЧН15/18 diesel engine. Calculation of engine thermal balance components is based on an engine external speed characteristic. An analysis of thermal balance for a 12ЧН15/18-type diesel engine of a ground armored vehicles has been made with separation according to: heat being withdrawn from cooling system liquid to environment; oil of lubrication system in the internal combustion engine; efficiently used heat; heat being withdrawn along with exhausted gases; residual portion of heat. The paper presents characteristics on changes in heat release during loading modes of the diesel engine operation and also shows an influence of the diesel loading on amount of heat withdrawn by cooling water and oil of diesel lubrication system. Two versions of the cooling system are considered in the paper, namely: with regulation and without regulation. The paper contains description of evaluation pertaining to an influence of a regulating system on characteristics of the diesel cooling system, parameters of efficient power and specific and efficient consumption of fuel. The necessity has been proved to modernize a regular fan cooling system of the armored vehicle with the 12ЧН15/18-type diesel engine. An influence of an average cooling liquid and diesel oil temperature with loading modes of 60 and 80 % on the efficient power of a power unit with a fan-type cooling system has been investigated in the paper. It has been determined that an increase in average temperatures of cooling liquid and oil for the 12ЧН15/18-type diesel makes it possible to improve economy and power of the diesel engine.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Tatjana Stanivuk ◽  
Branko Lalić ◽  
Jelena Žanić Mikuličić ◽  
Marko Šundov

Every internal combustion engine operates on the principle of converting thermal energy into mechanical work. During fuel combustion in the engine cylinders, the heat is released. It also has its negative effects; one is overheating of the engine cylinders and the engine in general. Since the engine parts are made of metal with its own thermal characteristics, the optimal temperature must be achieved in order to protect the components from overheating and, thus, from undesirable consequences of overheating. For this purpose, cooling medium is used as a means of maintaining the optimum temperature. Keeping the system functional as long as possible and minimizing possible deviations are very complex and difficult tasks. The complexity of the marine cooling system requires finding the optimal modes of operation, which results in an increased use of simulation models. This paper indicates advantages of using system dynamics as a tool for simulating certain events in a very realistic and economically acceptable way to prevent negative consequences for the entire marine system. System dynamics became an indispensable segment of designing various systems as well as the diesel engine cooling system.


Sign in / Sign up

Export Citation Format

Share Document