Measurement of the Spatial Rotation Angle in the Ball Joint

2019 ◽  
Author(s):  
Penghao Hu ◽  
Yuanqi Zhang ◽  
Zexun Lu
2017 ◽  
Vol 28 (10) ◽  
pp. 105907 ◽  
Author(s):  
Jian’an Cao ◽  
Xin Zhu ◽  
Hao Wu ◽  
Leping Zhang

2019 ◽  
Vol 9 (14) ◽  
pp. 2850 ◽  
Author(s):  
Peng-Hao Hu ◽  
Ze-Xun Lu ◽  
Yuan-Qi Zhang ◽  
Shan-Lin Liu ◽  
Xue-Ming Dang

The rotation orientation and the angle of precision of an intelligent ball joint cannot be automatically obtained in passive motion. In this paper, a new method based on a Hall sensor with a permanent magnet (PM) is proposed to identify the spatial rotation orientation and angle. The basic idea is to embed a PM on a ball while the Hall sensors are arrayed into the ball socket. When the ball rotates, the Hall sensor array detects the variation of the magnetic induction intensity in space. By establishing a mathematical model between the variation of the magnetic induction intensity and the orientation and angle of rotation, the rotation angle in the space where the ball is located can be inversely solved. The establishment of the theoretical model is based on the theory of the equivalent magnetic charge method, which has a few native defects that cannot be overcome by itself. This paper presents the relationship between the magnetic induction intensity change and the rotation angle of the ball in space, which was constructed by an artificial neural network (ANN) and will simplify the mathematical model, shorten the operation time, and improve the efficiency of real-time detection. Based on the simulation analysis, the optimal matching scheme between the PM and the magnetic effect sensor was determined, and the structural parameters of the ball joint prototype were optimized. The data training and comparison test of the neural network model were completed on a self-developed calibration device. The experimental results show that for a ±20° measurement range, the average errors of the uniaxial measurements are 1′51″ and 1′55″ on the two axes, respectively. At present, the measurement accuracy of the prototype is still relatively low; however, this idea of modeling based on ANN removes the shackles of mathematical modeling, reminding us that we can consider the design of sensors or complete geometric measurement modeling from a new perspective.


Author(s):  
H. Hashimoto ◽  
Y. Sugimoto ◽  
Y. Takai ◽  
H. Endoh

As was demonstrated by the present authors that atomic structure of simple crystal can be photographed by the conventional 100 kV electron microscope adjusted at “aberration free focus (AFF)” condition. In order to operate the microscope at AFF condition effectively, highly stabilized electron beams with small energy spread and small beam divergence are necessary. In the present observation, a 120 kV electron microscope with LaB6 electron gun was used. The most of the images were taken with the direct electron optical magnification of 1.3 million times and then magnified photographically.1. Twist boundary of ZnSFig. 1 is the image of wurtzite single crystal with twist boundary grown on the surface of zinc crystal by the reaction of sulphur vapour of 1540 Torr at 500°C. Crystal surface is parallel to (00.1) plane and electron beam is incident along the axis normal to the crystal surface. In the twist boundary there is a dislocation net work between two perfect crystals with a certain rotation angle.


2009 ◽  
Author(s):  
Sue A. Ferguson ◽  
William S. Marras ◽  
W. Gary Allread ◽  
Gregory G. Knapik ◽  
Kimberly A. Vandlen ◽  
...  

2020 ◽  
pp. 60-68
Author(s):  
V. A. Pyalchenkov ◽  
D. V. Pyalchenkov

Research has found that the axial load applied to the bit is distributed unevenly along the crowns of the balls. The middle crowns are the busiest. The value of the axial force perceived by a separate ring is associated with the deformation of the details of the ball joint. You can reduce the uneven loading of crowns by shifting them along the ball along the radius of the bit, placing them so that the vertical line passing through the center of the lower ball of the lock bearing passes through the middle of the gap between the crowns of neighboring balls. The bits with the new option of placing the teeth on the balls were tested on the stand and in industrial conditions. For the bits of this design, the axial load was distributed more evenly over the crowns, which allowed increasing the efficiency of their work.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 971
Author(s):  
Young Soo Yu ◽  
Chi Bum Ahn ◽  
Kuk Hui Son ◽  
Jin Woo Lee

A trachea has a structure capable of responding to various movements such as rotation of the neck and relaxation/contraction of the conduit due to the mucous membrane and cartilage tissue. However, current reported tubular implanting structures are difficult to impelement as replacements for original trachea movements. Therefore, in this study, we developed a new trachea implant with similar anatomical structure and mechanical properties to native tissue using 3D printing technology and evaluated its performance. A 250 µm-thick layer composed of polycaprolactone (PCL) nanofibers was fabricated on a rotating beam using electrospinning technology, and a scaffold with C-shaped cartilage grooves that mimics the human airway structure was printed to enable reconstruction of cartilage outside the airway. A cartilage type scaffold had a highest rotational angle (254°) among them and it showed up to 2.8 times compared to human average neck rotation angle. The cartilage type showed a maximum elongation of 8 times higher than that of the bellows type and it showed the elongation of 3 times higher than that of cylinder type. In cartilage type scaffold, gelatin hydrogel printed on the outside of the scaffold was remain 22.2% under the condition where no hydrogel was left in other type scaffolds. In addition, after 2 days of breathing test, the amount of gelatin remaining inside the scaffold was more than twice that of other scaffolds. This novel trachea scaffold with hydrogel inside and outside of the structure was well-preserved under external flow and is expected to be advantageous for soft tissue reconstruction of the trachea.


Sign in / Sign up

Export Citation Format

Share Document