Impact of Fuel Detergent Type and Concentration on the Rate and Severity of Stochastic Preignition in a Turbocharged Spark Ignition Direct Injection Gasoline Engine

2021 ◽  
Author(s):  
Elana Chapman ◽  
William Studzinski ◽  
Rebecca Monroe ◽  
Ati Tolou ◽  
Mangrish Wagle ◽  
...  
Author(s):  
Michael McGhee ◽  
Ziman Wang ◽  
Alexander Bech ◽  
Paul J Shayler ◽  
Dennis Witt

The changes in thermal state, emissions and fuel economy of a 1.0-L, three-cylinder direct injection spark ignition engine when a cylinder is deactivated have been explored experimentally. Cylinder deactivation improved engine fuel economy by up to 15% at light engine loads by reducing pumping work, raising indicated thermal efficiency and raising combustion efficiency. Penalties included an increase in NOx emissions and small increases in rubbing friction and gas work losses of the deactivated cylinder. The cyclic pressure variation in the deactivated cylinder falls rapidly after deactivation through blow-by and heat transfer losses. After around seven cycles, the motoring loss is ~2 J/cycle. Engine structural temperatures settle within an 8- to 13-s interval after a switch between two- and three-cylinder operation. Engine heat rejection to coolant is reduced by ~13% by deactivating a cylinder, extending coolant warm-up time to thermostat-opening by 102 s.


Author(s):  
N Kalian ◽  
H Zhao ◽  
J Qiao

Controlled auto-ignition (CAI) combustion, also known as homogeneous charge compression ignition (HCCI), can be achieved by trapping residuals with early exhaust valve closure in a direct-fuel-injection in-cylinder four-stroke gasoline engine (through the employment of low-lift cam profiles). Because the operating region is limited to low-load and midload operation for CAI combustion with a low-lift cam profile, it is important to be able to operate spark ignition (SI) combustion at high loads with a normal cam profile. A 3.0l prototype engine was modified to achieve CAI combustion, using a cam profile switching mechanism that has the capability to switch between high- and low-lift cam profiles. A strategy was used where a high-lift profile could be used for SI combustion and a low-lift profile was used for CAI combustion. Initial analysis showed that for a transition from SI to CAI combustion, misfire occurred in the first CAI transitional cycle. Subsequent experiments showed that the throttle opening position and switching time could be controlled to avoid misfire. Further work investigated transitions at different loads and from CAI to SI combustion.


2000 ◽  
Vol 1 (2) ◽  
pp. 147-161 ◽  
Author(s):  
J Reissing ◽  
H Peters ◽  
J. M. Kech ◽  
U Spicher

Gasoline direct injection (GDI) spark ignition engine technology is advancing at a rapid rate. The development and optimization of GDI engines requires new experimental methods and numerical models to analyse the in-cylinder processes. Therefore the objective of this paper is to present numerical and experimental methods to analyse the combustion process in GDI engines. The numerical investigation of a four-stroke three-valve GDI engine was performed with the code KIVA-3V [1]. For the calculation of the turbulent combustion a model for partially premixed combustion, developed and implemented by Kech [4], was used. The results of the numerical investigation are compared to experimental results, obtained using an optical fibre technique in combination with spectroscopic temperature measurements under different engine conditions. This comparison shows good agreement in temporal progression of pressure. Both the numerical simulation and the experimental investigation predicted comparable combustion phenomena.


Sign in / Sign up

Export Citation Format

Share Document