Overall Transmission Error Calculation of Differential Gear

2021 ◽  
Author(s):  
Zhenghong Shi ◽  
Jui Chen ◽  
Mohsen Kolivand ◽  
Zhaohui Sun ◽  
Eric Rivett ◽  
...  
2014 ◽  
Vol 971-973 ◽  
pp. 848-851 ◽  
Author(s):  
Jian Jie Tang ◽  
Jin Yuan Tang

A valid mathematic model is introduced to study the calculation of gear meshing transmission error, which is based on the manufacturing error and gear teeth deformation. Subsequently, take a pair of specific gear for example;The transmission error curves are obtained by the calculation model. The results show great consistency with the curves from Romax software, which indicates the validity and high accuracy of the mathematic model presented above. And it can be found that the shape change of transmission error curves affected mainly by the pitch error under the same conditions as the precision.


2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Jie Yang ◽  
Yanjiong Yue ◽  
Rupeng Zhu ◽  
Weifang Chen ◽  
Miaomiao Li

Taking the marine encased differential gear train as an example, the relationship between the journal bearing parameters and the meshing force of the transmission system is analyzed. In this paper, the dynamic model of the encased differential gear train with journal bearing is established considering the factors of time-varying meshing stiffness and comprehensive transmission error. In this dynamic model, four stiffnesses and four damping coefficients are applied to characterize the asymmetry and interaction of the oil film stiffness and damping of planet bearing. The system responses are calculated by the Fourier series numerical algorithm. The results show that the introduction of journal bearing in encased differential gear train can contribute to gearbox vibration reduction. Moreover, the planet bearing parameters (e.g., clearance-to-radius ratio and eccentricity ratio) of the differential stage affect the meshing forces of both the differential and encased stages. In addition, the influence of the planet bearing parameters of the encased stage on the meshing force of the encased stage is more obvious than that of the differential stage. This work may develop a theoretical analysis framework for the design and manufacture of marine transmission systems in the future.


2021 ◽  
Vol 166 ◽  
pp. 104471
Author(s):  
Fabio Bruzzone ◽  
Tommaso Maggi ◽  
Claudio Marcellini ◽  
Carlo Rosso

2013 ◽  
Vol 281 ◽  
pp. 211-215
Author(s):  
Yu Ning Wang ◽  
Zhi Li Sun ◽  
Ming Ang Yin

This research analyze the gear for body temperature field, according to the body temperature field, it calculates comprehensive deformation of the loaded gear by using the contact method. It extracts the deformation of gear surface along the gear thickness and gear tall direction, calculating the gear non-involute error. It calculates the gear transmission error considering the thermal deformation. The results show that: Considering thermal deformation non-involute error of addendum is maximum, and there are no mutations in gear non-involute error the transmission error caused by mutation of elastic deformation mutate at single and double tooth alternating position. The bigger mutation becomes, the bigger vibration amplitude will be. The results of the study provide a solid basis to improve the motion transmission accuracy of gear.


Author(s):  
Syuhei Kurokawa ◽  
Yasutsune Ariura ◽  
Yoji Matsukawa ◽  
Toshiro Doi

2021 ◽  
Vol 42 (9) ◽  
Author(s):  
Nils von Preetzmann ◽  
Reiner Kleinrahm ◽  
Philipp Eckmann ◽  
Giuseppe Cavuoto ◽  
Markus Richter

AbstractDensities of an air-like binary mixture (0.2094 oxygen + 0.7906 nitrogen, mole fractions) were measured along six isotherms over the temperature range from 100 K to 298.15 K at pressures up to 8.0 MPa, using a low-temperature single-sinker magnetic suspension densimeter. The measurements were carried out at T = (100, 115, and 130) K in the homogeneous gas and liquid region, and at T = (145, 220, and 298.15) K in the supercritical region (critical temperature TC = 132.35 K); in total, we present results for 52 (T, p) state points. The relative expanded combined uncertainty (k = 2) of the experimental densities was estimated to be between 0.03 % and 0.13 %, except for four values near the critical point. The largest error is caused by the magnetic suspension coupling in combination with the mixture component oxygen, which is strongly paramagnetic; the resulting force transmission error is up to 1.1 %. However, this error can be corrected with a proven correction model to an uncertainty contribution in density of less than 0.044 %. Due to a supercritical liquefaction procedure and the integration of a special VLE-cell, it was possible to measure densities in the homogeneous liquid phase without changing the composition of the liquefied mixture. Moreover, saturated liquid and saturated vapor densities were determined at T = (100, 115, and 130) K by extrapolation of the experimental single-phase densities to the saturation pressure. The new experimental results were compared with the mixture model of Lemmon et al. for the system (nitrogen + argon + oxygen) and the GERG-2008 equation of state.


2010 ◽  
Vol 97-101 ◽  
pp. 2764-2769
Author(s):  
Si Yu Chen ◽  
Jin Yuan Tang ◽  
C.W. Luo

The effects of tooth modification on the nonlinear dynamic behaviors are studied in this paper. Firstly, the static transmission error under load combined with misalignment error and modification are deduced. These effects can be introduced directly in the meshing stiffness and static transmission error models. Then the effect of two different type of tooth modification combined with misalignment error on the dynamic responses are investigated by using numerical simulation method. The numerical results show that the misalignment error has a significant effect on the static transmission error. The tooth crowning modification is generally preferred for absorbing the misalignment error by comparing with the tip and root relief. The tip and root relief can not resolve the vibration problem induced by misalignment error but the crowning modification can reduce the vibration significantly.


2021 ◽  
Vol 166 ◽  
pp. 104476
Author(s):  
Chanho Choi ◽  
Hyoungjong Ahn ◽  
Young-jun Park ◽  
Geun-ho Lee ◽  
Su-chul Kim

Sign in / Sign up

Export Citation Format

Share Document