scholarly journals Dynamic Characteristics of Encased Differential Gear Train with Journal Bearing

2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Jie Yang ◽  
Yanjiong Yue ◽  
Rupeng Zhu ◽  
Weifang Chen ◽  
Miaomiao Li

Taking the marine encased differential gear train as an example, the relationship between the journal bearing parameters and the meshing force of the transmission system is analyzed. In this paper, the dynamic model of the encased differential gear train with journal bearing is established considering the factors of time-varying meshing stiffness and comprehensive transmission error. In this dynamic model, four stiffnesses and four damping coefficients are applied to characterize the asymmetry and interaction of the oil film stiffness and damping of planet bearing. The system responses are calculated by the Fourier series numerical algorithm. The results show that the introduction of journal bearing in encased differential gear train can contribute to gearbox vibration reduction. Moreover, the planet bearing parameters (e.g., clearance-to-radius ratio and eccentricity ratio) of the differential stage affect the meshing forces of both the differential and encased stages. In addition, the influence of the planet bearing parameters of the encased stage on the meshing force of the encased stage is more obvious than that of the differential stage. This work may develop a theoretical analysis framework for the design and manufacture of marine transmission systems in the future.

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Donglin Zhang ◽  
Rupeng Zhu ◽  
Bibo Fu ◽  
Wuzhong Tan

Dynamic excitation caused by time-varying meshing stiffness is one of the most important excitation forms in gear meshing process. The mesh phase relations between each gear pair are an important factor affecting the meshing stiffness. In this paper, the mesh phase relations between gear pairs in an encased differential gear train widely used in coaxial twin-rotor helicopters are discussed. Taking the meshing starting point where the gear tooth enters contact as the reference point, the mesh phase difference between adjacent gear pairs is analyzed and calculated, the system reference gear pair is selected, and the mesh phase difference of each gear pair relative to the system reference gear pair is obtained. The derivation process takes into account the modification of the teeth, the processing, and assembly of the duplicate gears, which makes the calculation method and conclusion more versatile. This work lays a foundation for considering the time-varying meshing stiffness in the study of system dynamics, load distribution, and fault diagnosis of compound planetary gears.


2011 ◽  
Vol 86 ◽  
pp. 434-438
Author(s):  
Yong Qin Wang ◽  
Fei Yu Wang ◽  
Yuan Xin Luo

Dual-coiler is one of the most advanced coiling equipment designed for collecting strips in the rolling mill production line for the purpose of storing/transportation. The quality of the steel strip is largely affected by the tension force. This paper devotes to investigate the fluctuating tension force on the steel strip during the coiling process. The dynamics model of driveline is built for simulate the transmission error which is the main cause of the fluctuating tension force. In the proposed model, the time-varying meshing stiffness and damping, and the stiffness of strip are considered. A set of data are measured from the production line for evaluating the presented model. It’s believed that the proposed model can be used for improving the mechanical design of the machine.


2015 ◽  
Vol 137 (2) ◽  
Author(s):  
Guohui Xu ◽  
Jian Zhou ◽  
Haipeng Geng ◽  
Mingjian Lu ◽  
Lihua Yang ◽  
...  

Journal misalignment usually exists in journal bearings that affect nearly all the bearings static and dynamic characteristics including minimum oil film thickness, maximum oil film pressure, maximum oil film temperature, oil film stiffness, and damping. The main point in this study is to provide a comprehensive analysis on the oil film pressure, oil film temperature, oil film thickness, load-carrying capacity, oil film stiffness, and damping of journal bearing with different misalignment ratios and appropriately considering the turbulent and thermo effects based on solving the generalized Reynolds equation and energy equation. The results indicate that the oil thermo effects have a significant effect on the lubrication of misaligned journal bearings under large eccentricity ratio. The turbulent will obviously affect the lubrication of misaligned journal bearings when the eccentricity or misalignment ratio is large. In the present design of the journal bearing, the load and speed become higher and higher, and the eccentricity and misalignment ratio are usually large in the operating conditions. Therefore, it is necessary to take the effects of journal misalignment, turbulent, and thermal effect into account in the design and analysis of journal bearings.


2011 ◽  
Vol 314-316 ◽  
pp. 1603-1606
Author(s):  
Ying Chen Ma ◽  
Yan Wang ◽  
Ji Sheng Ma ◽  
Hai Ping Liu

Taking 2K-H differential gear train as study object, dynamic equation of torsion vibration was established with influence of time-varying meshing stiffness. The virtual-prototype with nonlinear meshing force was modeled using Virtual.Lab Motion software. Gear contact force was simulated, and it was verified by theoretical data. The reason of meshing vibration is analyzed. The results show that time-varying meshing stiffness is the main excitation of gear system, and gear system is vibratory although the input and output are stable, and the basic frequency is meshing frequency. This research lays foundation for strength checking, optimum design and fatigue life prediction.


2020 ◽  
pp. 107754632095952
Author(s):  
Jian Wang ◽  
Jun Zhang

Gear driving devices are commonly used in mechanical transmission systems. Due to the inevitable random errors in manufacturing, installation, and operation, the dynamics of a gear transmission system will fluctuate randomly. To reveal the dynamic characteristics, an interval parameters dynamic model of a single-stage spur gear pair is established, in which the uncertainties of displacement excitation, load excitation, and stiffness excitation are included, and their formulations are derived in detail by using interval mathematics. The established interval parameters dynamic model is solved by combining the Chebyshev inclusion function method and the Runge–Kutta method. Finally, the influence of the random interval parameters of meshing stiffness, input torque, and transmission error as well as backlash on the vibration velocity interval and transmission reliability of the gear transmission system are studied. The analysis results show that the three types of excitations have different effects on the dynamic characteristics. To be specific, the effects of uncertain parameters on the dynamic characteristics can be ordered as meshing stiffness, input torque, backlash, and transmission error in sequence from the strongest to the weakest. The present study may serve as a sound theoretical basis and can provide references for the design and vibration control of spur gear transmission systems.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Donglin Zhang ◽  
Rupeng Zhu ◽  
Miaomiao Li ◽  
Wuzhong Tan ◽  
Pingjun Li

Planetary gears are widely used in mechanical transmission systems, but the vibration and noise affect their reliability and life. In this paper, the torsional dynamic model of an encased differential planetary gear with coaxial contrarotating outputs considering the time-varying meshing stiffness, damping, and phase difference of all gear pairs is established. By solving the equations of the derived system, three types of natural frequencies with different multiplicities of the system are obtained. The multiscale method is used to study the parametric vibration stability caused by the time-varying meshing stiffness, and the results are verified by numerical simulation. The dynamic characteristics of elastic meshing force are analyzed from time domain and frequency domain. The variation of the dynamic load factor of each gear pair with input speed and the relationship between its peak position and the natural frequency of the derived system are discussed. The results show that there is an unequal coupling phenomenon of meshing frequency between the meshing forces of different planetary sets. In the absence of external excitation, the meshing stiffness parameters not only excite the main resonance response of the system but also cause superharmonic resonance, subharmonic resonance, and combined resonance.


2020 ◽  
Vol 33 (1) ◽  
Author(s):  
Guojun Ren

Abstract Water lubricated guide bearings for hydro turbines and pumps are conventionally designed with multiple axial grooves to provide effectively cooling and flushing away abrasives. Due to the variety of groove configuration in terms of number and size, a predication of their performance is difficult. This paper deals with an analytical procedure to investigate groove effect on load capacity, stiffness and damping for this type of bearing where it is considered as an assembly of many inclined slide bearings. The result can be applied to bearings made of hard materials combined with low bearing pressure.


2010 ◽  
Vol 97-101 ◽  
pp. 2764-2769
Author(s):  
Si Yu Chen ◽  
Jin Yuan Tang ◽  
C.W. Luo

The effects of tooth modification on the nonlinear dynamic behaviors are studied in this paper. Firstly, the static transmission error under load combined with misalignment error and modification are deduced. These effects can be introduced directly in the meshing stiffness and static transmission error models. Then the effect of two different type of tooth modification combined with misalignment error on the dynamic responses are investigated by using numerical simulation method. The numerical results show that the misalignment error has a significant effect on the static transmission error. The tooth crowning modification is generally preferred for absorbing the misalignment error by comparing with the tip and root relief. The tip and root relief can not resolve the vibration problem induced by misalignment error but the crowning modification can reduce the vibration significantly.


Author(s):  
Shijing Wu ◽  
Haibo Zhang ◽  
Xiaosun Wang ◽  
Zeming Peng ◽  
Kangkang Yang ◽  
...  

Backlash is a key internal excitation on the dynamic response of planetary gear transmission. After the gear transmission running for a long time under load torque, due to tooth wear accumulation, the backlash between the tooth surface of two mating gears increases, which results in a larger and irregular backlash. However, the increasing backlash generated by tooth accumulated wear is generally neglected in lots of dynamics analysis for epicyclic gear trains. In order to investigate the impact of backlash generated by tooth accumulated wear on dynamic behavior of compound planetary gear set, in this work, first a static tooth surface wear prediction model is incorporated with a dynamic iteration methodology to get the increasing backlash generated by tooth accumulated wear for one pair of mating teeth under the condition that contact ratio equals to one. Then in order to introduce the tooth accumulated wear into dynamic model of compound planetary gear set, the backlash excitation generated by tooth accumulated wear for each meshing pair in compound planetary gear set is given under the condition that contact ratio equals to one and does not equal to one. Last, in order to investigate the impact of the increasing backlash generated by tooth accumulated wear on dynamic response of compound planetary gear set, a nonlinear lumped-parameter dynamic model of compound planetary gear set is employed to describe the dynamic relationships of gear transmission under the internal excitations generated by worn profile, meshing stiffness, transmission error, and backlash. The results indicate that the introduction of the increasing backlash generated by tooth accumulated wear makes a significant influence on the bifurcation and chaotic characteristics, dynamic response in time domain, and load sharing behavior of compound planetary gear set.


Author(s):  
Fengxia Lu ◽  
Rupeng Zhu ◽  
Haofei Wang ◽  
Heyun Bao ◽  
Miaomiao Li

A new nonlinear dynamics model of the double helical planetary gear train with 44 degrees of freedom is developed, and the coupling effects of the sliding friction, time-varying meshing stiffness, gear backlashes, axial stagger as well as gear mesh errors, are taken into consideration. The solution of the differential governing equation of motion is solved by variable step-size Runge-Kutta numerical integration method. The influence of tooth friction on the periodic vibration and nonlinear vibration are investigated. The results show that tooth friction makes the system motion become stable by the effects of the periodic attractor under the specific meshing frequency and leads to the frequency delay for the bifurcation behavior and jump phenomenon in the system.


Sign in / Sign up

Export Citation Format

Share Document