Effect of Blend Fuel Properties on Combustion Improvement Under Heterogeneous Combustion Field by Using Multi-Impinging Injection System

2021 ◽  
Author(s):  
Jinru Liu ◽  
Tadashige Kawakami
Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 452
Author(s):  
Luka Lešnik ◽  
Breda Kegl ◽  
Eloísa Torres-Jiménez ◽  
Fernando Cruz-Peragón ◽  
Carmen Mata ◽  
...  

The presented paper aims to study the influence of mineral diesel fuel and synthetic Gas-To-Liquid fuel (GTL) on the injection process, fuel flow conditions, and cavitation formation in a modern common-rail injector. First, the influence on injection characteristics was studied experimentally using an injection system test bench, and numerically using the one-dimensional computational program. Afterward, the influence of fuel properties on internal fuel flow was studied numerically using a computational program. The flow inside the injector was considered as multiphase flow and was calculated through unsteady Computational Fluid Dynamics simulations using a Eulerian–Eulerian two-fluid approach. Finally, the influence of in-cylinder back pressure on the internal nozzle flow was studied at three distinctive back pressures. The obtained numerical results for injection characteristics show good agreement with the experimental ones. The results of 3D simulations indicate that differences in fuel properties influence internal fuel flow and cavitation inception. The location of cavitation formation is the same for both fuels. The cavitation formation is triggered regardless of fuel properties. The size of the cavitation area is influenced by fuel properties and also from in-cylinder back pressure. Higher values of back pressure induce smaller areas of cavitation and vice versa. Comparing the conditions at injection hole exit, diesel fuel proved slightly higher average mass flow rate and velocities, which can be attributed to differences in fluid densities and viscosities. Overall, the obtained results indicate that when considering the injection process and internal nozzle flow, GTL fuel can be used in common-rail injection systems with solenoid injectors.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Qaisar Hayat ◽  
Liyun Fan ◽  
Enzhe Song ◽  
Xiuzhen Ma ◽  
Bingqi Tian ◽  
...  

Operating conditions dependent large pressure variations are one of the working characteristics of combination electronic unit pump (CEUP) fuel injection system for diesel engines. We propose a precise and accurate nonlinear numerical model of pressure inside HP fuel pipeline of CEUP using wave equation (WE) including both viscous and frequency dependent frictions. We have proved that developed hyperbolic approximation gives more realistic description of pressure wave as compared to classical viscous damped wave equation. Frictional effects of various frequencies on pressure wave have been averaged out across valid frequencies to represent the combined effect of all frequencies on pressure wave. Dynamic variations of key fuel properties including density, acoustic wave speed, and bulk modulus with varying pressures have also been incorporated. Based on developed model we present analysis on effect of fuel pipeline length on pressure wave propagation and variation of key fuel properties with both conventional diesel and alternate fuel rapeseed methyl ester (RME) for CEUP pipeline.


Author(s):  
U. Dwivedi ◽  
C. D. Carpenter ◽  
E. S. Guerry ◽  
A. C. Polk ◽  
S. R. Krishnan ◽  
...  

Diesel-ignited gasoline dual fuel combustion experiments were performed in a single-cylinder research engine (SCRE), outfitted with a common-rail diesel injection system and a stand-alone engine controller. Gasoline was injected in the intake port using a port-fuel injector. The engine was operated at a constant speed of 1500 rev/min, a constant load of 5.2 bar indicated mean effective pressure (IMEP), and a constant gasoline energy substitution of 80%. Parameters such as diesel injection timing (SOI), diesel injection pressure, and boost pressure were varied to quantify their impact on engine performance and engine-out indicated specific nitrogen oxide emissions (ISNOx), indicated specific hydrocarbon emissions (ISHC), indicated specific carbon monoxide emissions (ISCO), and smoke emissions. Advancing SOI from 30 degrees before top dead center (DBTDC) to 60 DBTDC reduced ISNOx from 14 g/kW h to less than 0.1 g/kW h; further advancement of SOI did not yield significant ISNOx reduction. A fundamental change was observed from heterogeneous combustion at 30 DBTDC to “premixed enough” combustion at 50–80 DBTDC and finally to well-mixed diesel-assisted gasoline homogeneous charge compression ignition (HCCI)-like combustion at 170 DBTDC. Smoke emissions were less than 0.1 filter smoke number (FSN) at all SOIs, while ISHC and ISCO were in the range of 8–20 g/kW h, with the earliest SOIs yielding very high values. Indicated fuel conversion efficiencies were ∼ 40–42.5%. An injection pressure sweep from 200 to 1300 bar at 50 DBTDC SOI and 1.5 bar intake boost showed that very low injection pressures lead to more heterogeneous combustion and higher ISNOx and ISCO emissions, while smoke and ISHC emissions remained unaffected. A boost pressure sweep from 1.1 to 1.8 bar at 50 DBTDC SOI and 500 bar rail pressure showed very rapid combustion for the lowest boost conditions, leading to high pressure rise rates, higher ISNOx emissions, and lower ISCO emissions, while smoke and ISHC emissions remained unaffected by boost pressure variations.


Author(s):  
Ibrahim Najar ◽  
Bert Buchholz ◽  
Benjamin Stengel ◽  
Christian Fink ◽  
Egon Hassel

The present paper deals with the influence of fuel properties on the spray behaviour. This influence was studiedexperimentally using a common rail injection system from a medium speed diesel engine. The experiments have been performed with diesel fuel (EN-590) and heavy fuel oil (RMG 180) on a constant volume chamber at room temperature. Comparison of the spray characteristics shows that the heavy fuel oil penetrates deeper in the chamber. However, the diesel spray has a bigger cone angle. These results formed the basis for a further development of the 1D-model [1] to predict the spray penetration by considering the fuel properties and temperature.DOI: http://dx.doi.org/10.4995/ILASS2017.2017.4787


2014 ◽  
Vol 681 ◽  
pp. 19-22
Author(s):  
Hayat Qaisar ◽  
Li Yun Fan ◽  
En Zhe Song ◽  
Xiu Zhen Ma ◽  
Bing Qi Tian ◽  
...  

High pressure (HP) fuel pipeline is one of the vital components of Combination Electronic Unit Pump (CEUP) fuel injection system besides pump and injector. Effect of four key fuel properties including density, viscosity, acoustic wave speed and bulk modulus on pressure wave profile has been investigated using a 1D viscous damped mathematical model. Wave equation (WE) based mathematical model has been developed in MATLAB using finite difference method. Dynamic variations of these fuel properties during fuel injection cycles have also been incorporated in mathematical model by utilizing empirical formulas. The results show that these four key fuel properties not only vary with the pressure during fuel injection process but also define the trend of pressure wave propagation inside HP fuel pipeline.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
M. Z. H. Khan ◽  
M. Sultana ◽  
M. R. Al-Mamun ◽  
M. R. Hasan

The authors introduced waste plastic pyrolysis oil (WPPO) as an alternative fuel characterized in detail and compared with conventional diesel. High density polyethylene, HDPE, was pyrolyzed in a self-designed stainless steel laboratory reactor to produce useful fuel products. HDPE waste was completely pyrolyzed at 330–490°C for 2-3 hours to obtain solid residue, liquid fuel oil, and flammable gaseous hydrocarbon products. Comparison of the fuel properties to the petrodiesel fuel standards ASTM D 975 and EN 590 revealed that the synthetic product was within all specifications. Notably, the fuel properties included a kinematic viscosity (40°C) of 1.98 cSt, density of 0.75 gm/cc, sulphur content of 0.25 (wt%), and carbon residue of 0.5 (wt%), and high calorific value represented significant enhancements over those of conventional petroleum diesel fuel.


Sign in / Sign up

Export Citation Format

Share Document