Study of Effect of Diesel Fuel Properties on Pressure Wave Profile

2014 ◽  
Vol 681 ◽  
pp. 19-22
Author(s):  
Hayat Qaisar ◽  
Li Yun Fan ◽  
En Zhe Song ◽  
Xiu Zhen Ma ◽  
Bing Qi Tian ◽  
...  

High pressure (HP) fuel pipeline is one of the vital components of Combination Electronic Unit Pump (CEUP) fuel injection system besides pump and injector. Effect of four key fuel properties including density, viscosity, acoustic wave speed and bulk modulus on pressure wave profile has been investigated using a 1D viscous damped mathematical model. Wave equation (WE) based mathematical model has been developed in MATLAB using finite difference method. Dynamic variations of these fuel properties during fuel injection cycles have also been incorporated in mathematical model by utilizing empirical formulas. The results show that these four key fuel properties not only vary with the pressure during fuel injection process but also define the trend of pressure wave propagation inside HP fuel pipeline.

2014 ◽  
Vol 681 ◽  
pp. 7-10
Author(s):  
Hayat Qaisar ◽  
Li Yun Fan ◽  
En Zhe Song ◽  
Xiu Zhen Ma ◽  
Bing Qi Tian ◽  
...  

Diesel fuel pressure wave inside Combination Electronic Unit Pump (CEUP) pipeline has been investigated using a 1D viscous damped mathematical model considering the effect of four key fuel properties including density, viscosity, acoustic wave speed and bulk modulus. Wave equation (WE) based mathematical model has been developed in MATLAB using finite difference method. Mathematical model results at various operating conditions of diesel engine have been verified by comparing with those of AMESim numerical model of CEUP and quantified through Root Mean Square Errors (RMSE) and Index of Agreements (IA). Dynamic variations of these fuel properties during fuel injection cycles have also been incorporated in mathematical model by utilizing empirical formulas. Predicted results show that simulated results which consider fuel properties dynamic variations as a function of pressure are more coherent to AMESim numerical model results.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Qaisar Hayat ◽  
Liyun Fan ◽  
Enzhe Song ◽  
Xiuzhen Ma ◽  
Bingqi Tian ◽  
...  

Operating conditions dependent large pressure variations are one of the working characteristics of combination electronic unit pump (CEUP) fuel injection system for diesel engines. We propose a precise and accurate nonlinear numerical model of pressure inside HP fuel pipeline of CEUP using wave equation (WE) including both viscous and frequency dependent frictions. We have proved that developed hyperbolic approximation gives more realistic description of pressure wave as compared to classical viscous damped wave equation. Frictional effects of various frequencies on pressure wave have been averaged out across valid frequencies to represent the combined effect of all frequencies on pressure wave. Dynamic variations of key fuel properties including density, acoustic wave speed, and bulk modulus with varying pressures have also been incorporated. Based on developed model we present analysis on effect of fuel pipeline length on pressure wave propagation and variation of key fuel properties with both conventional diesel and alternate fuel rapeseed methyl ester (RME) for CEUP pipeline.


2013 ◽  
Vol 805-806 ◽  
pp. 1823-1826 ◽  
Author(s):  
Hayat Qaisar ◽  
Li Yun Fan ◽  
Bing Qi Tian ◽  
Zhen Ma Xiu

High pressure (HP) fuel pipeline is one of the major components of Combination Electronic Unit Pump (CEUP) diesel fuel injection system and has significant contribution in building up of high pressure required during fuel injection cycle. A MATLAB numerical model of pressure wave inside HP fuel pipeline of CEUP system using damped wave equation has been developed in MATLAB to study and simulate pressure wave propagation through fuel pipeline at various operating conditions of diesel engine. Finite Difference method has been applied to model and simulate pressure equation at various equidistant locations of fuel pipeline. Dynamic variations of fuel properties as a function of varying pressure have also been incorporated. The MATLAB model has been validated by comparing simulated pressures with those of experimentally validated AMESim numerical model of CEUP fuel injection system. Quantitative comparisons were also done using Root Mean Square Error (RMSE) and Index of Agreement (IA). Results show that MATLAB numerical model is quite accurate especially at low cam rotational speeds and low cam angles.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 452
Author(s):  
Luka Lešnik ◽  
Breda Kegl ◽  
Eloísa Torres-Jiménez ◽  
Fernando Cruz-Peragón ◽  
Carmen Mata ◽  
...  

The presented paper aims to study the influence of mineral diesel fuel and synthetic Gas-To-Liquid fuel (GTL) on the injection process, fuel flow conditions, and cavitation formation in a modern common-rail injector. First, the influence on injection characteristics was studied experimentally using an injection system test bench, and numerically using the one-dimensional computational program. Afterward, the influence of fuel properties on internal fuel flow was studied numerically using a computational program. The flow inside the injector was considered as multiphase flow and was calculated through unsteady Computational Fluid Dynamics simulations using a Eulerian–Eulerian two-fluid approach. Finally, the influence of in-cylinder back pressure on the internal nozzle flow was studied at three distinctive back pressures. The obtained numerical results for injection characteristics show good agreement with the experimental ones. The results of 3D simulations indicate that differences in fuel properties influence internal fuel flow and cavitation inception. The location of cavitation formation is the same for both fuels. The cavitation formation is triggered regardless of fuel properties. The size of the cavitation area is influenced by fuel properties and also from in-cylinder back pressure. Higher values of back pressure induce smaller areas of cavitation and vice versa. Comparing the conditions at injection hole exit, diesel fuel proved slightly higher average mass flow rate and velocities, which can be attributed to differences in fluid densities and viscosities. Overall, the obtained results indicate that when considering the injection process and internal nozzle flow, GTL fuel can be used in common-rail injection systems with solenoid injectors.


Author(s):  
Kazushi Sanada

A direct drive volume control (DDVC) is applied to fuel injection control for marine diesel engine. The DDVC consists of an AC servomotor, a fixed-displacement hydraulic pump, and a hydraulic cylinder. The hydraulic cylinder pushes a plunger pump and fuel is pressurized. When the fuel pressure becomes greater than injection pressure, fuel is injected to a combustion chamber. A brief introduction of the DDVC is described first in this paper referring to conventional fuel injection systems including a cam mechanism and a common rail system. A mathematical model of the DDVC for simulation is summarized. Experiments of fuel injection shows the control function of the DDVC fuel injection system. The topic of this paper is feedback control of the quantity of fuel injection (fuel mass per injection) of the DDVC. The feedback control system is simulated using the above mathematical model. Fuel injection is stopped by switching a drive signal of the AC servomotor and retracting a piston of the hydraulic cylinder. The timing to stop injection is adjusted based on crank angle. An algorithm of updating the crank angle to stop injection is proposed so that the quantity of fuel injection follows the target value. Simulation study shows that the update algorithm works successfully.


Author(s):  
Ibrahim Najar ◽  
Bert Buchholz ◽  
Benjamin Stengel ◽  
Christian Fink ◽  
Egon Hassel

The present paper deals with the influence of fuel properties on the spray behaviour. This influence was studiedexperimentally using a common rail injection system from a medium speed diesel engine. The experiments have been performed with diesel fuel (EN-590) and heavy fuel oil (RMG 180) on a constant volume chamber at room temperature. Comparison of the spray characteristics shows that the heavy fuel oil penetrates deeper in the chamber. However, the diesel spray has a bigger cone angle. These results formed the basis for a further development of the 1D-model [1] to predict the spray penetration by considering the fuel properties and temperature.DOI: http://dx.doi.org/10.4995/ILASS2017.2017.4787


2021 ◽  
Vol 42 ◽  
pp. 79-84
Author(s):  
Dragoș Tutunea ◽  
Ilie Dumitru ◽  
Laurenţiu Racilă

The objective of this paper is to investigate the fuel injection system in diesel engines by using inline pumps. In a diesel engines, the fuel injection pressure plays an important role in the combustion process in order to obtain high performance and low fuel consumption. The experiments in this paper are been performed on a 6 cylinder inline pump which is actioned by an electric motor with variable r.p.m.-s The quantity of the fuel injected by each injector is measured function of time and the speed of electric motor. The experiments show the degree of non-uniformity of the fuel delivered by the pump to injectors.


2013 ◽  
Vol 645 ◽  
pp. 445-449 ◽  
Author(s):  
Ming Hai Li ◽  
Zhe Zhou ◽  
Xian Zhe Jia

Parameters are obtained by mapping the entity structural electronic control unit pump injection system of HXn5 diesel locomotive introduced from USA. A simulation model was built up with GT-Fuel, which can well reflect the electromagnetic and hydraulic characteristics of the fuel injection system, as well as the fuel injection rate and fuel quantity. Compares with locally high-power diesel, the calculation curves show its superiority, which will establish a foundation for optimization and improvement of local fuel injection system.


2016 ◽  
Vol 8 (5) ◽  
pp. 168781401664824 ◽  
Author(s):  
Mohammad Reza Herfatmanesh ◽  
Zhijun Peng ◽  
Alexis Ihracska ◽  
Yuzhen Lin ◽  
Lipeng Lu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document