Quantification of Platooning Fuel Economy Benefits across United States Interstates Using Closed-Loop Vehicle Model Simulation

2021 ◽  
Author(s):  
Parul Chadha ◽  
Vivek Anand Sujan
Author(s):  
Brian S. Fan ◽  
Amir Khajepour ◽  
Mehrdad Kazerani

Recent development of hybrid vehicles in the automotive industry has demonstrated the capability of reducing fuel consumption while maintaining vehicle performance. The purpose of this paper is to present a hybrid vehicle model created in MATLAB and ADAMS, and its fuel economy improvement over a conventional vehicle system. The hybrid vehicle model discussed in this paper utilizes the Honda IMA (Integrated Motor Assist) architecture. The powertrain components’ power output calculation and the control logic were modeled in MATLAB/Simulink, while the mechanical inertial components were modeled in ADAMS. Communication between MATLAB and ADAMS was established by ADAMS/Controls. The vehicle model created using MATLAB and ADAMS provides a more accurate, more realistic, and a highly flexible simulation platform. In order to evaluate the accuracy of the MATLAB/ADAMS hybrid vehicle model, simulation results were compared to the published data of ADVISOR. Fuel economy of hybrid and conventional vehicle models were compared using the EPA New York City Cycle (NYCC) and the Highway Fuel Economy Cycle (HWFET). The hybrid vehicle demonstrated 8.9% and 14.3% fuel economy improvement over the conventional vehicle model for the NYCC and HWFET drive cycles, respectively. The MATLAB/ADAMS vehicle model presented in this paper, demonstrated the fuel economy advantage of the hybrid vehicle over the conventional vehicle model, while offering a simulation platform that is modular, flexible, and can be conveniently modified to create different types of vehicle models.


2014 ◽  
Vol 889-890 ◽  
pp. 958-961
Author(s):  
Huan Ming Chen

It is very important to simulate driver's manipulation for people - car - road closed loop simulation system. In this paper, the driver model is divided into two parts, linear vehicle model is used to simulate the driver's driving experience, and closed-loop feedback is used to characterize the driver's emergency feedback. The lateral acceleration of vehicle is used as feedback in closed loop control. Simulation results show that the smaller lateral acceleration requires the less closed-loop feedback control. The driver model can accurately track the target path, which can be used to simulate the manipulation of the driver. The driver model can be used for people - car - road closed loop simulation to evaluate vehicle handling stability.


Author(s):  
Subhransu Padhee ◽  
Umesh Chandra Pati ◽  
Kamalakanta Mahapatra

This study provides a step-by-step analysis of closed-loop parametric system identification for DC-DC buck converter. In closed-loop parametric identification, input–output experimental data are used to estimate the transfer function coefficients of DC-DC buck converter. For system identification purpose, a high-frequency perturbation signal is injected in to the closed-loop system which acts as an input signal for identification experiment. Different input–output models such as Auto-Regressive eXogenous, Auto-Regressive Moving Average with eXogenous, output error, and Box–Jenkins are used to model the converter structure and prediction error method is used to estimate the parameters. Model validation schemes are used to validate the estimated model. Simulation and experimental analysis have been provided to validate the results obtained.


2017 ◽  
Author(s):  
Daniel L. Goldberg ◽  
Lok N. Lamsal ◽  
Christopher P. Loughner ◽  
Zifeng Lu ◽  
David G. Streets

Abstract. This work presents a new high resolution NO2 dataset derived from the standard NASA Ozone Monitoring Instrument (OMI) NO2 version 3.0 retrieval that can be used to estimate surface level concentrations. The standard NASA product uses NO2 vertical profile shape factors from a 1.25° × 1° (~ 110 × 110 km) resolution Global Model Initiative (GMI) model simulation to calculate air mass factors, a critical value used to determine observed tropospheric NO2 vertical columns. To better estimate vertical profile shape factors, we use a high resolution Community Multi-scale Air Quality (CMAQ) model simulation (1.33 × 1.33 km) to generate tropospheric air mass factors and tropospheric NO2 columns during summertime in the eastern United States. Results show OMI NO2 tropospheric columns in this new product increase by up to 160 % in city centers, and decrease by 20–50 % in the rural areas outside of urban areas when compared to the operational product. This new product shows much better agreement with the Pandora NO2 spectrometer measurements acquired during the DISCOVER-AQ Maryland field campaign. Furthermore, the correlation between this satellite product and EPA NO2 monitors in urban areas has improved dramatically: r2 = 0.60 in new product, r2 = 0.39 in operational product, signifying that this new product is a better indicator of surface concentrations than the operational product. Our work emphasizes the need to use high resolution models to re-calculate satellite data in areas with large spatial heterogeneities in NOx emissions. Although the current work is focused on the eastern United States, the methodology developed in this work can be applied to other world regions to produce high-quality region-specific NO2 satellite retrievals.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Sravya B. Shankara ◽  
Yujia Liu ◽  
Qingfeng Zheng ◽  
Jing Guo ◽  
Guixia Wang ◽  
...  

Objective. The objective of this article is to provide a high-profile review and discussion on the study design and statistical analysis of pivotal clinical trials conducted to demonstrate the safety and effectiveness of closed-loop investigational artificial pancreas device systems (APDSs) in premarket approval applications. Methods. The United States Food and Drug Administration (FDA) guidance on the content of investigational device exemption and premarket approval applications for APDSs is reviewed with special emphasis on study design and statistical analysis of the pivotal clinical trials. The two pivotal studies for the MiniMed 670G hybrid closed-loop system by Medtronic in their premarket approval application are summarized and discussed. Results. The United States FDA established detailed recommendations on the study design and statistical analysis of pivotal clinical trials for the industry that seek market investigational APDSs and for FDA scientific reviewers that regulate the device applications. The recommendations cover specifics regarding patient population, clinical endpoints, and strategies for data analysis. However, the two pivotal studies that demonstrated the effectiveness of the FDA-approved MiniMed 670G hybrid closed-loop system were not typical randomized controlled trials as per FDA recommendations. Conclusion. The development and regulation of investigational APDSs require careful and sophisticated clinical study designs and data analysis in premarket approval applications. The regulatory evaluation process of the APDSs is rather complicated since the devices consist of multiple components that collaboratively function to mimic human pancreases.


2021 ◽  
Author(s):  
Martin Medina-Elizalde ◽  
Stefan Perritano ◽  
Matthew DeCesare ◽  
Josué Polanco-Martinez ◽  
Gabriela Serrato-Marks ◽  
...  

Abstract We present new high-resolution absolute-dated stalagmite δ18O and δ13C records from the southeastern United States (SE US) spanning the last 12 thousand years (ka). A local relationship between annual rainfall amount and its amount-weighed δ18O composition exists on interannual timescales, driven mostly by an amount effect during summer and spring seasons, and by an isotopically depleted composition of fall and winter precipitation. Based on a novel interpretation of modern rainfall isotopic data, stalagmite δ18O variability is interpreted to reflect the relative contribution of summer and spring precipitation combined relative to combined fall and winter precipitation. Precipitation amount in the SE US increases during the Younger Dryas, the 8.2 ka and Little Ice Age abrupt cooling events. High precipitation during these events reflects enhancement of spring and summer precipitation while the contribution of fall and winter rainfall remained unchanged or decreased slightly. Results from this study support model simulation results that suggest increased precipitation in the SE US during Atlantic Meridional Overturning Circulation (AMOC) slowdown/shutdown (LeGrande et al., 2006; Renssen et al., 2002; Vellinga and Wood, 2002). In association with Northern Hemisphere mid-latitude cooling from the Early to mid-Holocene, annual precipitation in the SE US decreases, a pattern distinctive from that observed during abrupt cooling events related to AMOC shifts. Long-term hydroclimate change in the SE US is likely sensitive to summer insolation reduction as inferred for other tropical and subtropical regions. This study has implications for our understanding of the sensitivity of subtropical hydroclimate to factors both internal and external to the climate system in a warmer climate.


Sign in / Sign up

Export Citation Format

Share Document