Design of a Formula SAE Race Car: Vehicle Dynamics and Performance

1982 ◽  
Author(s):  
Campbell Duncan Carter ◽  
Cindy Barr Sherman ◽  
Ronald D. Matthews
Author(s):  
Ismail Fidan ◽  
Adam McGough ◽  
Jeff Foote

Formula SAE (FSAE) is a design competition organized each year by the Society of Automotive Engineers (SAE). The objective of the competition is to bring the best and brightest future engineers from each participating school to present a small scale race car. Although this sounds like a relatively simple concept, the actual execution is rather challenging and rewarding for the team. For almost three years Tennessee Tech University (TTU) has had a FSAE team. The first year was a planning year, so Tennessee Tech University has participated in the competition for the last two years. Both years have been extreme learning experiences since TTU was not prepared for the level of competition brought by participating schools. However TTU FSAE team is beginning to implement modern design tools such as FEA, Virtual Manufacturing, and Rapid Prototyping to help streamline the design efforts so that one day Golden Eagle FSAE will be one of the top competing teams. In this publication, authors will report on one Golden Eagle FSAE component (the rear upright) development stages and its accomplishments.


Sports ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 118
Author(s):  
Edem Appiah-Dwomoh ◽  
Anja Carlsohn ◽  
Frank Mayer

Long-distance race car drivers are classified as athletes. The sport is physically and mentally demanding, requiring long hours of practice. Therefore, optimal dietary intake is essential for health and performance of the athlete. The aim of the study was to evaluate dietary intake and to compare the data with dietary recommendations for athletes and for the general adult population according to the German Nutrition Society (DGE). A 24-h dietary recall during a competition preparation phase was obtained from 16 male race car drivers (28.3 ± 6.1 years, body mass index (BMI) of 22.9 ± 2.3 kg/m2). The mean intake of energy, nutrients, water and alcohol was recorded. The mean energy, vitamin B2, vitamin E, folate, fiber, calcium, water and alcohol intake were 2124 ± 814 kcal/day, 1.3 ± 0.5 mg/day, 12.5 ± 9.5 mg/day, 231.0 ± 90.9 ug/day, 21.4 ± 9.4 g/day, 1104 ± 764 mg/day, 3309 ± 1522 mL/day and 0.8 ± 2.5 mL/day respectively. Our study indicated that many of the nutrients studied, including energy and carbohydrate, were below the recommended dietary intake for both athletes and the DGE.


Author(s):  
V. V. Vantsevich

Wheel dynamics is a significant component of vehicle dynamics and performance analysis. This paper presents an innovative method of studying wheel dynamics and wheel performance control based on the inverse dynamics formulation of the problem. Such an approach opens up a new way to the optimization and control of both vehicle dynamics and vehicle performance by optimizing and controlling power distribution to the drive wheels. An equation of motion of a wheel is derived first from the wheel power balance equation that makes the equation more general. This equation of motion is considered the basis for studying both direct and inverse wheel dynamics. The development of a control strategy on the basis of the inverse wheel dynamics approach includes wheel torque control that provides a wheel with both the referred angular velocity and rolling radius and also with the required functionals of quality. An algorithm for controlling the angular velocity is presented as the first part in the implementation of the developed strategy of the inverse wheel dynamics/performance control.


Author(s):  
Henrique de Carvalho Pinheiro ◽  
Francesco Russo ◽  
Lorenzo Sisca ◽  
Alessandro Messana ◽  
Davide De Cupis ◽  
...  

Abstract Active aerodynamics is a growing field in the race car and high-performance vehicles segments, since each situation on the track may require different aero forces to achieve the best vehicle dynamics performance. This paper presents an active aerodynamics control system developed through the active control of the body trim. By interchanging four different setups on the suspension heights with a fuzzy logic control, relevant advantage is obtained in terms of lap time reduction. Two systems, a PID and a Feedforward logic, are studied to implement the control strategy and important differences are found in the stability of tire-ground forces benefiting the latter. Furthermore, the system was validated in a Driver-In-the-Loop (DIL) static simulator with a more realistic road conditions and important insights in terms of subjective evaluation.


2019 ◽  
Vol 24 (S1) ◽  
pp. 26-29
Author(s):  
Pit Peiffer ◽  
Cyriak Heierli
Keyword(s):  

2013 ◽  
Vol 18 (1) ◽  
pp. 53-61 ◽  
Author(s):  
Federico Baronti ◽  
Andrea Lazzeri ◽  
Roberto Roncella ◽  
Roberto Saletti ◽  
Sergio Saponara
Keyword(s):  

2010 ◽  
Vol 15 (2) ◽  
pp. 223-234 ◽  
Author(s):  
Raguraman Munusamy ◽  
David C. Barton
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document