Development and Application of the Road Profile Measuring System

1993 ◽  
Author(s):  
Tetsushi Mimuro ◽  
Takahiro Maemura ◽  
Hiroshi Fujii
2021 ◽  
Author(s):  
Angelo Domenico Vella ◽  
Antonio Tota ◽  
Alessandro Vigliani

Author(s):  
G. Yakubu ◽  
G. Sani ◽  
S. B. Abdulkadir ◽  
A. A.Jimoh ◽  
M. Francis

Full car passive and active damping system mathematical model was developed. Computer simulation using MATLAB was performed and analyzed. Two different road profile were used to check the performance of the passive and active damping using Linear Quadratic Regulator controller (LQR)Road profile 1 has three bumps with amplitude of 0.05m, 0.025 m and 0.05 m. Road profile 2 has a bump with amplitude of 0.05 m and a hole of -0.025 m. For all the road profiles, there were 100% amplitude reduction in Wheel displacement, Wheel deflection, Suspension travel and body displacement, and 97.5% amplitude reduction in body acceleration for active damping with LQR controller as compared to the road profile and 54.0% amplitude reduction in body acceleration as compared to the passive damping system. For the two road profiles, the settling time for all the observed parameters was less than two (2) seconds. The present work gave faster settling time for mass displacement, body acceleration and wheel displacement.


2019 ◽  
Vol 12 (2) ◽  
pp. 71-75
Author(s):  
Salem F. Salman

All vehicles are affected by the type of the road they are moving on it.  Therefore the stability depends mainly on the amount of vibrations and steering system, which in turn depend on two main factors: the first is on the road type, which specifies the amount of vibrations arising from the movement of the wheels above it, and the second on is the type of the used suspension system, and how the parts connect with each other. As well as the damping factors, the tires type, and the used sprungs. In the current study, we will examine the effect of the road roughness on the performance coefficients (speed, displacement, and acceleration) of the joint points by using a BOGE device.


2021 ◽  
Vol 69 (6) ◽  
pp. 485-498
Author(s):  
Felix Anhalt ◽  
Boris Lohmann

Abstract By applying disturbance feedforward control in active suspension systems, knowledge of the road profile can be used to increase ride comfort and safety. As the assumed road profile will never match the real one perfectly, we examine the performance of different disturbance compensators under various deteriorations of the assumed road profile using both synthetic and measured profiles and two quarter vehicle models of different complexity. While a generally valid statement on the maximum tolerable deterioration cannot be made, we identify particularly critical factors and derive recommendations for practical use.


2018 ◽  
Vol 211 ◽  
pp. 13001
Author(s):  
Veronika Valašková ◽  
Jozef Melcer

The vehicle - roadway interaction is actual engineering problem solved on many workplaces in the world. At the present time preference is given to numerical and experimental approaches. Vehicle designers are interested in the vibration of the vehicle and the forces acting on the vehicle. Civil engineers are interested in the load acting on the road. Solution of the problem can be carried out in time or in frequency domain. Road unevenness is the main source of kinematic excitation of the vehicle and therefore the main source of dynamic forces acting both on the road and the vehicle. The offered article deals with one of the possibilities of numerical analysis of the vehicle response in frequency domain. It works with quarter model of the vehicle. For the selected computational model of the vehicle it quantifies the Frequency Response Functions (FRF) of both force and kinematic quantities. It considers the stochastic road profile. The Power Spectral Density (PSD) of the road profile is used as input value for the calculation of Power Spectral Density of the response. All calculations are carried out numerically in the environment of program system MATLAB. When we know the modules of FRF or the Power Response Factors (PRF) of vehicle model the calculation of vehicle response in frequency domain is fast and efficient.


Author(s):  
Saad Ullah ◽  
Burak F. Tanyu ◽  
Erol F. Guler ◽  
Edward J. Hoppe ◽  
Emre Akmaz

The purpose of this research was to investigate the properties of the exhumed geotextile from a low-volume road on the Virginia Department of Transportation network. The exhumed geotextiles have been in service for 23 years, which provided an opportunity to evaluate the longevity of the materials as well as to make assessments of how it relates to the changes in material properties. During this investigation, subgrade and base course materials were also obtained from the same site and an experimental program was developed to evaluate the effectiveness of the exhumed geotextiles for separation, stabilization, and filtration for the base course thicknesses of 4, 6, and 8 in. The results from this study combined with the results from the previous studies conducted at the same site showed that when the geotextile is placed between the subgrade and base course, the thinner the pavement section, the more evident the effectiveness of the geotextile improvements. One important finding of this research was that the placement of a geotextile reduced the particle breakage caused by abrasion under the applied transient loads. This was observed as a stabilization effect of the geotextile inclusion. As a general conclusion, for low-volume roads with relatively thin pavement sections, properly selected geotextiles provide benefits for separating the subgrade and base course (minimizing pumping), filtering infiltrated or ground water, and stabilizing the road profile. These benefits become more apparent when the thickness of the base course is less than 8 in.


2017 ◽  
Vol 54 (2) ◽  
pp. 3-13
Author(s):  
A. Serebryakov ◽  
E. Kamolins ◽  
N. Levin

Abstract The control systems for the objects of industry, power generation, transport, etc. are extremely complicated; functional efficiency of these systems determines to a great extent the safe and non-polluting operation as well as convenience of service and repair of such objects. The authors consider the possibility to improve the efficiency of systems for damping oscillations in transport using a combination of electrical (generators of rotational and linear types) and hydraulic means. Better efficiency of functioning is achieved through automatic control over the operational conditions of such a system in order to make it adaptive to variations in the road profile and ambient temperature; besides, it is possible to produce additional electric energy.


Author(s):  
Maroua Haddar ◽  
S Caglar Baslamisli ◽  
Riadh Chaari ◽  
Fakher Chaari ◽  
Mohamed Haddar

In order to isolate the propagation of unwanted vibrations to passengers and improve vehicle maneuverability, it is common practice to predict road profile roughness in the scope of active suspension design. An algebraic estimator designed for the estimation of the road profile excitation has been investigated in this study based on vehicle dynamics responses. An approximation of road profile excitation by a piecewise constant function has been proposed using the operational calculus method and the differential algebraic theory. The proposed technique allows for the usage of cheap instrumentation with a small number of sensors and employs a straightforward calibration process. Accurate approximation of the road profile was obtained from the measurement of sprung mass and unsprung mass vertical displacements. The performance and robustness of the proposed algebraic predictor is compared with an augmented Kalman estimator. Numerical results are provided to analyze the effectiveness and the limitations of the proposed algorithm for road profile reconstruction. Furthermore, a comparison with real profile was studied.


Author(s):  
Craig T. Altmann ◽  
John B. Ferris

Modeling customer usage in vehicle applications is critical in performing durability simulations and analysis in early design stages. Currently, customer usage is typically based on road roughness (some measure of accumulated suspension travel), but vehicle damage does not vary linearly with the road roughness. Presently, a method for calculating a pseudo damage measure is developed based on the roughness of the road profile, specifically the International Roughness Index (IRI). The IRI and pseudo damage are combined to create a new measure referred to as the road roughness-insensitive pseudo damage. The road roughness-insensitive pseudo damage measure is tested using a weighted distribution of IRI values corresponding to the principal arterial (highways and freeways) road type from the Federal Highway Administration (FHWA) Highway Performance Monitoring System (HPMS) dataset. The weighted IRI distribution is determined using the number of unique IRI occurrences in the functional road type dataset and the Average Annual Daily Traffic (AADT) provided in the FHWA HPMS data.


Volume 2 ◽  
2004 ◽  
Author(s):  
Mohammad Durali ◽  
Alireza Kasaaizadeh

This paper presents a method for estimation of road profile for automotive research applications with more accuracy and higher speed. Dynamic response of a car equipped with position and velocity sensors and driving on a sample road is used as basic data. A feed-forward neural network, trained with outputs from a car model in ADAMS, is used as the car inverse model. The neural network is capable of estimating the road roughness from the car response during test drives. The ADAMS model is corrected and validated using a series of dynamic experiments on the car, performed on a hydro-pulse test rig. The only problem in this approach, like other identification and optimization methods, is the large volume of generated data in time domain, acquired from car response during road test. This problem is solved using wavelet methods to code the acquired data. Unlike all frequency methods that eliminate a large portion of the data details during processing, the wavelet coding method restores most of the details, while the volume of the stored data is kept to a minimum. The results show that this method can estimate the road profile accurately and with great savings in processing time and effort.


Sign in / Sign up

Export Citation Format

Share Document