Modeling the Effects of Intake Flow Characteristics on Diesel Engine Combustion

1995 ◽  
Author(s):  
Philip W. Stephenson ◽  
Christopher J. Rutland
2011 ◽  
Vol 130-134 ◽  
pp. 95-98 ◽  
Author(s):  
Xi Xin ◽  
De Xin Liu ◽  
Liu Qing Wang ◽  
Li Wang

This paper developed a new design of variable swirl intake manifolds for four-valve DI diesel engine by setting swirl control valves in the intake manifolds. The 3-D numerical model under the same experimental condition was established and particular flow information in intake manifolds and cylinder was achieved. Influence of variable swirl intake manifolds on intake flow characteristics and in-cylinder swirl characteristics were analyzed. The simulation results show that the swirl intensity in cylinder can be tuned by this device. The swirl intensity increases gradually with decrease flow coefficient and it can meet the requirements of swirl intensity for different operating conditions.


2013 ◽  
Vol 744 ◽  
pp. 211-214
Author(s):  
Hong Meng Li ◽  
Guo Xiu Li ◽  
Yuan Jing Hou ◽  
Yu Song Yu

In this paper, the three-dimensional CFD method is used in numerical simulation of the highly intensified diesel engine intake process. The effect of different intake flow compound modes on the highly intensified diesel engine is studied (Including compounded port with helical and tangential intake port, compounded port with two helical intake ports and compounded port with two tangential intake ports). By contrasting the instantaneous flow field, flow characteristic and inlet ability of the three compound modes, the pattern of influence on the inlet flow characteristics by compound modes is analyzed. The results indicate that the combinations of the intake port greatly affect the swirl rate and the inlet ability. The interference of the two helical intake ports is serious, causing more inlet loss. The two helical intake ports have the weakest inlet ability among the three types of intake ports. However, two helical intake ports can cause higher swirl rate. Two tangential intake ports inlet ability is the most excellent, but its swirl rate is the lowest.


1977 ◽  
Vol 16 (1) ◽  
pp. 321-336 ◽  
Author(s):  
G. Greeves ◽  
I.M. Khan ◽  
G. Onion

2013 ◽  
Vol 744 ◽  
pp. 35-39
Author(s):  
Lei Ming Shi ◽  
Guang Hui Jia ◽  
Zhi Fei Zhang ◽  
Zhong Ming Xu

In order to obtain the foundation to the research on the Diesel Engine YN4100QB combustion process, exhaust, the optimal design of combustion chamber and the useful information for the design of exhaust muffler, the geometric model and mesh model of a type internal combustion engine are constructed by using FIRE software to analyze the working process of internal combustion engine. Exhaust noise is the main component of automobile noise in the study of controlling vehicle noise. It is primary to design a type of muffler which is good for agricultural automobile engine matching and noise reduction effect. The present car mufflers are all development means. So it is bound to cause the long cycle of product development and waste of resources. Even sometimes not only can it not reach the purpose of reducing the noise but also it leads to reduce the engine dynamic. The strength of the exhaust noise is closely related to engine combustion temperature and pressure. The calculation and initial parameters are applied to the software based on the combustion model and theory. According to the specific operation process of internal combustion engine. Five kinds of common operation condition was compiled. It is obtained for the detailed distribution parameters of combusted gas temperature pressure . It is also got for flow velocity of the fields in cylinder and given for the relation of the parameters and crankshaft angle for the further research. At the same time NOx emissions situation are got. The numerical results show that not only does it provide the 3D distribution data in different crank shaft angle inside the cylinder in the simulation of combustion process, but also it provides a basis for the engine combustion ,emission research, the optimization design of the combustion chamber and the useful information for the designs of muffler.


Sign in / Sign up

Export Citation Format

Share Document