scholarly journals Luminance Calibration and Linearity Correction Method of Imaging Luminance Measurement Devices

2021 ◽  
Vol 13 (2) ◽  
pp. 25
Author(s):  
Dariusz Czyżewski ◽  
Irena Fryc

This paper presents that the opto-electrical characteristic of a typical CCD based digital camera is nonlinear. It means that digital electric signal of the camera's CCD detector - is not a linear function of the luminance value on camera's lens. The opto-electrical characteristic feature of a digital camera needs to be transformed into a linear function if this camera is to be used as a luminance distribution measurement device known as Imaging Luminance Measurement Device (ILMD). The article presents the methodology for obtaining the opto-electrical characteristic feature of a typical CCD digital camera and focuses on the non- linearity correction method. Full Text: PDF ReferencesD. Wüller and H. Gabele, "The usage of digital cameras as luminance meters," in Digital Photography III, 2007, p. 65020U CrossRef P. Fiorentin and A. Scroccaro, "Detector-Based Calibration for Illuminance and Luminance Meters-Experimental Results," IEEE Transactions on Instrumentation and Measurement, vol. 59, no. 5, pp. 1375-1381, 2010 CrossRef M. Shpak, P. Kärhä, G. Porrovecchio, M. Smid, and E. Ikonen, "Luminance meter for photopic and scotopic measurements in the mesopic range," Meas. Sci. Technol, vol. 25, no. 9, p. 95001, 2014, CrossRef P. Fiorentin, P. Iacomussi, and G. Rossi, "Characterization and calibration of a CCD detector for light engineering," IEEE Transactions on Instrumentation and Measurement, vol. 54, no. 1, pp. 171-177, 2005, CrossRef I. Fryc and E. Czech, "Application of optical fibers and CCD array for measurement of luminance distribution," in Proc. SPIE 5064, Lightmetry 2002: Metrology and Testing Techniques Using Light, 2003, pp. 18-21, CrossRef I. Fryc, "Accuracy of spectral correction of a CCD array for luminance distribution measurement," in Proc. SPIE 5064, Lightmetry 2002: Metrology and Testing Techniques Using Light, 2003, pp. 38-42, CrossRef I. Fryc, "Analysis of the spectral correction errors of illuminance meter photometric head under the influence of the diffusing element," Optical Engineering, vol. 40, no. 8, pp. 1636-1640, 2001. CrossRef D. Czyzewski, "Monitoring of the subsequent LED lighting installation in Warsaw in the years 2014-2015," in Proceedings of 2016 IEEE Lighting Conference of the Visegrad Countries, Lumen V4 2016, 2016, pp. 1-4, CrossRef M. Sielachowska, D. Tyniecki, and M. Zajkowski, "Measurements of the Luminance Distribution in the Classroom Using the SkyWatcher Type System," in 2018 VII. Lighting Conference of the Visegrad Countries (Lumen V4), 2018, pp. 1-5, CrossRef W. Malska and H. Wachta, "Elements of inferential statistics in a quantitative assessment of illuminations of architectural structures," in 2016 IEEE Lighting Conference of the Visegrad Countries (Lumen V4), 2016, pp. 1-6, CrossRef T. Kruisselbrink, R. Dangol, and A. Rosemann, "Photometric measurements of lighting quality: An overview," Building and Environment, vol. 138, pp. 42-52, 2018. CrossRef A. Borisuit, M. Münch, L. Deschamps, J. Kämpf, and J.-L. Scartezzini, "A new device for dynamic luminance mapping and glare risk assessment in buildings," in Proc. SPIE 8485. Nonimaging Optics: Efficient Design for Illumination and Solar Concentration IX, 2012, vol. 8485, p. 84850M, CrossRef I. Lewin and J. O'Farrell, "Luminaire photometry using video camera techniques," Journal of the Illuminating Engineering Society, vol. 28, no. 1, pp. 57-63, 1999, CrossRef D. Czyżewski, "Research on luminance distributions of chip-on-board light-emitting diodes," Crystals, vol. 9, no. 12, pp. 1-14, 2019, CrossRef K. Tohsing, M. Schrempf, S. Riechelmann, H. Schilke, and G. Seckmeyer, "Measuring high-resolution sky luminance distributions with a CCD camera," Applied optics, vol. 52, no. 8, pp. 1564-1573, 2013. CrossRef D. Czyzewski, "Investigation of COB LED luminance distribution," in Proceedings of 2016 IEEE Lighting Conference of the Visegrad Countries, Lumen V4 2016, 2016, pp. 1-4, CrossRef A. de Vries, J. L. Souman, B. de Ruyter, I. Heynderickx, and Y. A. W. de Kort, "Lighting up the office: The effect of wall luminance on room appraisal, office workers' performance, and subjective alertness," Building and Environment, 2018 CrossRef D. Silvestre, J. Guy, J. Hanck, K. Cornish, and A. Bertone, "Different luminance- and texture-defined contrast sensitivity profiles for school-aged children," Nature. Scientific Reports, vol. 10, no. 13039, 2020, CrossRef H. Wachta, K. Baran, and M. Leśko, "The meaning of qualitative reflective features of the facade in the design of illumination of architectural objects," in AIP Conference Proceedings, 2019, vol. 2078, no. 1, p. 20102. CrossRef CIE, "Technical raport CIE 231:2019. CIE Classification System of Illuminance and Luminance Meters.," Vienna, Austria, 2019. CrossRef DIN, "Standard DIN 5032-7:2017. Photometry - Part 7: Classification of illuminance meters and luminance meters.," 2017. DirectLink CEN, "EN 13032-1:2004. Light and lighting - Measurement and presentation of photometric data of lamps and luminaires - Part 1: Measurement and file format," Bruxelles, Belgium., 2004. DirectLink CIE, "Technical raport CIE 231:2019. CIE Classification System of Illuminance and Luminance Meters," Vienna, Austria, 2019 CrossRef E. Czech, D. Czyzewski, "The linearization of the relationship between scene luminance and digital camera output levels", Photonics Letter of Poland 13, 1 (2021). CrossRef

2021 ◽  
Vol 13 (1) ◽  
pp. 16
Author(s):  
Eugeniusz Czech ◽  
Dariusz Czyżewski

This paper presents the results of linearity testing of the integrated image sensor of a CCD-equipped digital camera. The study demonstrated the lack of linearity of the characteristics of the sensor when scaling with the luminance standard signal. In the course of the research the function approximated by the fifth-degree polynomial was determined. After the appropriate transformation, this function would enable the linearization of the signal from the studied image sensor. The study demonstrated the possibility of linearizing the signal of integrated image sensors for correct luminance measurements. Thus, the possibility of reducing the nonlinearity error of integrated image sensors was discussed. Full Text: PDF ReferencesT. Tashiro, S. Kawanobe, T. Kimura-Minoda, S. Kohko, T. Ishikawa, and M. Ayama, "Discomfort glare for white LED light sources with different spatial arrangements," Lighting Research and Technology, vol. 47, no. 3, pp. 316-337, 2015, doi: 10.1177/1477153514532122. CrossRef A. de Vries, J. L. Souman, B. de Ruyter, I. Heynderickx, and Y. A. W. de Kort, "Lighting up the office: The effect of wall luminance on room appraisal, office workers' performance, and subjective alertness," Building and Environment, 2018, doi: 10.1016/j.buildenv.2018.06.046. CrossRef E. Czech and I. Fryc, "Illumination quality measurement of the work-station," in Proc. SPIE 5566. Optical Security and Safety, 2004, vol. 5566, pp. 239-242. CrossRef D. Czyzewski, "Monitoring of the lighting conditions of a street illuminated with road lights equipped with LEDs," Przeglad Elektrotechniczny, vol. 86, no. 10, pp. 170-172, 2010. DirectLink S. Słomiński, "Identifying problems with luminaire luminance measurements for discomfort glare analysis," Lighting Research and Technology, vol. 48, no. 5, pp. 573-588, 2016 CrossRef D. Czyzewski, "Monitoring of the subsequent LED lighting installation in Warsaw in the years 2014-2015," in Proceedings of 2016 IEEE Lighting Conference of the Visegrad Countries, Lumen V4 2016, 2016, pp. 1-4, CrossRef F. Greffier, V. Muzet, V. Boucher, F. Fournela, and R. Dronneau, "Use of an imaging luminance measuring device to evaluate road lighting performance at different angles of observation," in Proceedings of the 29th Quadrennial Session of the CIE, 2019, pp. 553-562. CrossRef D. Czyżewski, "Comparison of luminance distribution on the lighting surface of power LEDs," Photonics Letters of Poland, vol. 11, no. 4, pp. 118-120, 2019, doi: 10.4302/plp.v11i4.966. CrossRef S. Zalewski, "Design of optical systems for LED road luminaires," Applied Optics, vol. 54, no. 2, pp. 163-170, 2015, doi: 10.1364/ao.54.000163. CrossRef D. Czyzewski, "Investigation of COB LED luminance distribution," in Proceedings of 2016 IEEE Lighting Conference of the Visegrad Countries, Lumen V4 2016, 2016, pp. 1-4, CrossRef M. Jongewaard, "Guide to selecting the appropriate type of light source model," in Proc.SPIE, Aug. 2002, vol. 4775, pp. 86-98, CrossRef D. Czyzewski, "Luminance distribution of LED luminous surface," Przeglad Elektrotechniczny, vol. 86, no. 10, pp. 166-169, 2010. DirectLink D. Czyżewski, "Research on luminance distributions of chip-on-board light-emitting diodes," Crystals, vol. 9, no. 12, pp. 1-14, 2019, CrossRef J. Fang, H. Xu, W. Lv, and M. R. Luo, "59-3: Proper Luminance of HDR TV system," in SID Symposium Digest of Technical Papers, 2016, pp. 806-808, CrossRef E. A. Cooper, H. Jiang, V. Vildavski, J. E. Farrell, and A. M. Norcia, "Assessment of OLED displays for vision research.," Journal of vision, vol. 13, no. 12, pp. 1-13, 2013 CrossRef C. D. Galatanu, "Improving the Luminance Measurement from Digital Images," in 2019 International Conference on Electromechanical and Energy Systems (SIELMEN), 2019, pp. 1-4. CrossRef M. Moeck and S. Anaokar, "Illuminance analysis from high dynamic range images," LEUKOS - Journal of Illuminating Engineering Society of North America, vol. 2, no. 3, pp. 211-228, 2006, CrossRef D. Wüller and H. Gabele, "The usage of digital cameras as luminance meters," in Digital Photography III, 2007, p. 65020U CrossRef I. Fryc and E. Czech, "Spectral correction of the measurement CCD array," Optical Engineering, vol. 41, no. 10, pp. 2402-2406, 2002, CrossRef I. Fryc, "Accuracy of spectral correction of a CCD array for luminance distribution measurement," in Proc. SPIE 5064, Lightmetry 2002: Metrology and Testing Techniques Using Light, 2003, pp. 38-42 CrossRef I. Fryc, "Analysis of the spectral correction errors of illuminance meter photometric head under the influence of the diffusing element," Optical Engineering, vol. 40, no. 8, pp. 1636-1640, 2001. CrossRef S. W. Brown, G. P. Eppeldauer, and K. R. Lykke, "Facility for spectral irradiance and radiance responsivity calibrations using uniform sources," Applied Optics, vol. 45, no. 32, pp. 8218-8237, 2006 CrossRef D. W. Allen, G. P. Eppeldauer, S. W. Brown, E. A. Early, B. C. Johnson, and K. R. Lykke, "Calibration and characterization of trap detector filter radiometers," in Proc. SPIE 5151. Earth Observing Systems VIII, 2003, pp. 471-479 CrossRef I. Lewin and J. O'Farrell, "Luminaire photometry using video camera techniques," Journal of the Illuminating Engineering Society, vol. 28, no. 1, pp. 57-63, 1999, CrossRef P. Fiorentin, P. Iacomussi, and G. Raze, "Characterization and calibration of a CCD detector for light engineering," IEEE Transactions on Instrumentation and Measurement, vol. 54, no. 1, pp. 171-177, 2005 CrossRef I. Fryc and E. Czech, "Application of optical fibers and CCD array for measurement of luminance distribution," in Proc. SPIE 5064, Lightmetry 2002: Metrology and Testing Techniques Using Light, 2003, pp. 18-21, CrossRef International Organization for Standardization, "Standard ISO 14524:2009 Photography - Electronic still-picture cameras - Methods for measuring opto-electronic conversion functions (OECFs)," International Organization for Standardization Publication, 2009. CrossRef I. Fryc, "Chosen properties of a photometric detector BPYP 07," in Proc. SPIE 4517, Lightmetry: Metrology, Spectroscopy, and Testing Techniques Using Light, 2001, vol. 4517, pp. 34-36 CrossRef D. Mozyrska, I. Fryc, and M. Wyrwas, "Nonlinear numerical models of spectral power distributions of black body," PRZEGLAD ELEKTROTECHNICZNY, vol. 87, no. 4, pp. 116-119, 2011. DirectLink D. Mozyrska and I. Fryc, "Spectroradiometric data interpolation and approximation-case study," PRZEGLAD ELEKTROTECHNICZNY, vol. 85, no. 11, pp. 253-256, 2009. CrossRef


2020 ◽  
Vol 12 (4) ◽  
pp. 121
Author(s):  
Dariusz Czyżewski

Luminance measurements are used in a vast range of lighting technology fields. The author’s research has proved that measuring the luminance distribution on light source surface is the most challenging part of this process. The research has been conducted for a commercially available digital luminance distribution meter, with the goal of analyzing the influence of image focus settings and exposure parameters on the measured luminance values. It has been concluded that the incorrect image focus and inadequately matched exposure parameters (distance from the workpiece) contribute to quantitative changes in the information on luminance distribution on the LED surface and affect the precision the maximum luminance determination. Full Text: PDF ReferencesC. Xu, H. Cheng, and Y. Feng, "Optical design of rectangular illumination with freeform lenses for the application of LED road lighting," Frontiers of Optoelectronics, 2017, CrossRef D. Czyzewski, "LED substitutes of conventional incandescent lamps," Przeglad Elektrotechniczny, vol. 88, no. 11A, pp. 123-127, 2012. DirectLink W. R. Ryckaert, K. A. G. Smet, I. A. A. Roelandts, M. Van Gils, and P. Hanselaer, "Linear LED tubes versus fluorescent lamps: An evaluation," Energy and Buildings, 2012, CrossRef X.-H. Lee, I. Moreno, and C.-C. Sun, "High-performance LED street lighting using microlens arrays," Optics Express, 2013, CrossRef D. Czyzewski, "The street lighting luminaires with LEDs," Przeglad Elektrotechniczny, vol. 86, pp. 276-279, 2009. DirectLink D. Mozyrska, M. Wyrwas, and I. Fryc, "The determination of the LEDs colorimetric parameters, in the range of their operating temperature," Przeglad Elektrotechniczny, vol. 93, no. 4a, pp. 232-234, 2012. DirectLink J. Kowalska and I. Fryc, "Colour rendition quality of typical fluorescent lamps determined by CIE colour fidelity index and colour rendering index," Przeglad Elektrotechniczny, vol. 95, no. 7, pp. 94--97, 2019, CrossRef J. Kowalska, "Analysis of parameters describing the quality of the color rendering of light sources according to the IES TM-30-15 and the CIE 013.3-1995," Przeglad Elektrotechniczny, vol. 93, no. 6, pp. 50--54, 2017, CrossRef K. Houser, M. Mossman, K. Smet, and L. Whitehead, "Tutorial: Color Rendering and Its Applications in Lighting," LEUKOS - Journal of Illuminating Engineering Society of North America, vol. 12, no. 1-2, pp. 7-26, 2016, CrossRef S. Słomiński, "Identifying problems with luminaire luminance measurements for discomfort glare analysis," Lighting Research and Technology, 2016, CrossRef D. Czyzewski, "Investigation of COB LED luminance distribution," 2016, CrossRef M. Jongewaard, "Guide to selecting the appropriate type of light source model," in Proc.SPIE, Aug. 2002, vol. 4775, CrossRef D. Czyzewski, "Selected problems of defining the luminous area of electroluminescent diodes," Przeglad Elektrotechniczny, vol. R. 84, nr 8, pp. 125-128, 2008. DirectLink C. D. Galatanu, "Improving the Luminance Measurement from Digital Images," in 2019 International Conference on Electromechanical and Energy Systems (SIELMEN), 2019, pp. 1-4. CrossRef I. Fryc and E. Czech, "Application of optical fibers and CCD array for measurement of luminance distribution," in Proc. SPIE 5064, Lightmetry 2002: Metrology and Testing Techniques Using Light, 2003, pp. 18-21, CrossRef I. Fryc and E. Czech, "Spectral correction of the measurement CCD array," Optical Engineering, 2002, CrossRef I. Fryc, "Angular characteristics of a silicon detector spectral sensitivity corrected by an absorption filter," in Proc. SPIE 4517, Lightmetry: Metrology, Spectroscopy, and Testing Techniques Using Light, 2001, pp. 42-45, CrossRef I. Fryc, "Accuracy of spectral correction of a CCD array for luminance distribution measurement," in Proc. SPIE 5064, Lightmetry 2002: Metrology and Testing Techniques Using Light, 2003, pp. 38-42, CrossRef M. Moeck and S. Anaokar, "Illuminance analysis from high dynamic range images," LEUKOS - Journal of Illuminating Engineering Society of North America, pp. 211-228, 2006, CrossRef D. Czyżewski, "Research on luminance distributions of chip-on-board light-emitting diodes," Crystals, 2019, CrossRef


2021 ◽  
Author(s):  
A.A. Bartsev ◽  
A.A. Bartseva

The method for estimating the illuminance distribution in the vertical plane of museum objects (paintings) using a digital imaging luminance meters (ILMD) is considered. In order to pass from the luminance distribution to the illuminance distribution, a screen with reflective properties close to diffuse (Lambert) reflection is used. The theoretical and experimental uncertainty estimation of the measurement method done.


2021 ◽  
Vol 13 (16) ◽  
pp. 9029
Author(s):  
Alexandru Viorel Rusu ◽  
Catalin Daniel Galatanu ◽  
Gheorghe Livint ◽  
Dorin Dumitru Lucache

The main quality condition in street lighting is luminance distribution. During the carrying out of the literature, average luminance is the most important parameter to check. The standard BS EN 13201-3 imposes that average luminance must be calculated for the observer placed in the center of each circulating lane. As a consequence, according to these standards, the measurements can be done only on streets without traffic. Stopping the traffic on all lanes is very difficult. This paper proposes a solution for measuring the average luminance from outside the carriageway. The research was performed by simulations/calculations and was validated by field measurements. Imaging sensors were used to measure average luminance, while DIALux EVO 9.1 was used for the simulations. For symmetrical, opposite, and staggered lighting arrangements, average luminance measurements were performed with a digital camera positioned outside of the traffic area, with the equipment placed at the edge of the carriageway, giving similar results with standard measurements, with almost no difference. For single sided lighting arrangements, the differences became unacceptable. In this case, the paper proposes a correction function to calculate the average luminance for the observer placed on the carriageway, based on measurements with a digital camera placed outside the traffic area.


2019 ◽  
Vol 11 (4) ◽  
pp. 118
Author(s):  
Dariusz Czyżewski

This work presents luminance distributions across the surface of mid- and high-power diodes. The changes in luminance on diode surfaces following changes in the observation angle were verified. On the basis of the conducted tests, non-uniform luminance distribution on LED surface for diverse observation angles (including the axial direction) was observed. Moreover, it was concluded that luminance changes is not in line with the Lambert’s law. As the result of the research it was also concluded that alterations of the power-supply conditions do not exert any significant impact on the gradient of luminance changes on the surfaces of examined LEDs. Full Text: PDF ReferencesJ. Fan, J. Cao, Ch. Yu, Ch. Qian, X. Fan, G. Zhang, A design and qualification of LED flip Chip-on-Board module with tunable color temperatures, Microelectronics reliability, ISSN 0026-2714, Nº. 84, 2018, pp. 140-148, CrossRef K. Bonislawski, I. Fryc, The study on optical properties of LEDs used for vehicle control lighting, Przeglad Elektrotechniczny, 2012, ISSN 0033-2097, Vol. 88, Issue 3A, pp. 119-120 DirectLink T. Kawabata, Y. Ohno, Optical measurements of OLED panels for lighting applications, Journal of Modern Optics 60(14), 2013, pp. 1176-1186 CrossRef P. Pracki, U. Blaszczak, The issues of interior lighting on the example of an educational building adjustment to nZEB standard, IEEE Lighting Conference of the Visegrad Countries (Lumen V4), IEEE (17 November 2016) CrossRef P. Tabaka, Analysis of electrical parameters of prime set bulb equivalents suitable for dimming, Przeglad Elektrotechniczny, 2015, R. 91, No. 5, pp. 100-106, ISSN 0033-2097 CrossRef D. Czyżewski, The street lighting luminaires with LEDs. Przeglad Elektrotechniczny, 86, 2009, pp. 276-279 DirectLink C. C. Miller; Y. Zong; Y. Ohno, LED photometric calibrations at the National Institute of Standards and Technology and future measurement needs of LEDs, Proc. SPIE Vol. 5530, Fourth International Conference on Solid State Lighting; (2004) CrossRef D. Mozyrska Dorota; M. Wyrwas; I. Fryc, The determination of the LEDs colorimetric parameters, in the range of their operating temperature, Przeglad Elektrotechniczny, Vol. 88, Issue: 4A, 2012, pp. 232-234 CrossRef K. Baran, A. Różowicz, H. Wachta, S. Różowicz, D. Mazur, Thermal Analysis of the Factors Influencing Junction Temperature of LED Panel Sources, Energies, 12, 3941, 2019 CrossRef D. Czyżewski, Research on Luminance Distributions of Chip-On-Board Light-Emitting Diodes, Crystals 9(12), 645, 2019. CrossRef L. Zheng, Z. Guo, W. Yan, Y. Lin, Y. Lu, H.C. Kuo, Z. Chen, L. Zhu, T. Wu, Y. Gao, Research on a Camera-Based Microscopic Imaging System to Inspect the Surface Luminance of the Micro-LED Array. IEEE Access 6, 2018, 51329-51336. CrossRef S. Słomiński, Selected Problems in Modern Methods of Luminance Measurement of Multisource LED Luminaires. Light Eng. 24, 2016, pp. 45-50. DirectLink I. Fryc, P. Jakubowski, K. Kołacz, Analysis of optical radiation parameters of compact discharge HID lamps and LED COB modules used for illuminating shop windows, Przeglad Elektrotechniczny, 2017, R. 93, nr 11, pp. 186-189. CrossRef I. Fryc, Measurement techniques of optical LEDs properties performed with compliance conformity with CIE 127:2007 standard, Przeglad Elektrotechniczny, 2009,ISSN 0033-2097,Vol. 85,Issue:11,pp.317-319. DirectLink I. Fryc, T. Dimitrova-Grekow, An Automated System for Evaluation of the Quality of Light Sources, 2016 IEEE Lighting Conference of the Visegrad Countries (Lumen V4), IEEE (17 November 2016), CrossRef CIE 235:2019, Optical measurement of led modules and light engines, ISBN 978-3-902842-25-1, DOI: 10.25039/TR.235.2019. CrossRef D. Czyżewski, Investigation of COB LED luminance distribution, In Proceedings of the 2016 IEEE Lighting Conference of the Visegrad Countries (Lumen V4), IEEE (17 November 2016) CrossRef I. Rotscholl, K. Trampert; U. Krüger; F. Schmidt, Spectral near field data of LED systems for optical simulations, Proceedings SPIE Volume 11144,Phot. and Educ. in Measur. Sc. 2019, CrossRef


2019 ◽  
Vol 23 (4) ◽  
pp. 1776-1785 ◽  
Author(s):  
Anjin Chang ◽  
Jinha Jung ◽  
Dugan Um ◽  
Junho Yeom ◽  
Frederick Hanselmann

1997 ◽  
Vol 29 (1) ◽  
pp. 40-46 ◽  
Author(s):  
A. L Bellia ◽  
A. Cesarano ◽  
F. Minichiello ◽  
S. Sibilio

Sign in / Sign up

Export Citation Format

Share Document