scholarly journals The linearization of the relationship between scene luminance and digital camera output levels

2021 ◽  
Vol 13 (1) ◽  
pp. 16
Author(s):  
Eugeniusz Czech ◽  
Dariusz Czyżewski

This paper presents the results of linearity testing of the integrated image sensor of a CCD-equipped digital camera. The study demonstrated the lack of linearity of the characteristics of the sensor when scaling with the luminance standard signal. In the course of the research the function approximated by the fifth-degree polynomial was determined. After the appropriate transformation, this function would enable the linearization of the signal from the studied image sensor. The study demonstrated the possibility of linearizing the signal of integrated image sensors for correct luminance measurements. Thus, the possibility of reducing the nonlinearity error of integrated image sensors was discussed. Full Text: PDF ReferencesT. Tashiro, S. Kawanobe, T. Kimura-Minoda, S. Kohko, T. Ishikawa, and M. Ayama, "Discomfort glare for white LED light sources with different spatial arrangements," Lighting Research and Technology, vol. 47, no. 3, pp. 316-337, 2015, doi: 10.1177/1477153514532122. CrossRef A. de Vries, J. L. Souman, B. de Ruyter, I. Heynderickx, and Y. A. W. de Kort, "Lighting up the office: The effect of wall luminance on room appraisal, office workers' performance, and subjective alertness," Building and Environment, 2018, doi: 10.1016/j.buildenv.2018.06.046. CrossRef E. Czech and I. Fryc, "Illumination quality measurement of the work-station," in Proc. SPIE 5566. Optical Security and Safety, 2004, vol. 5566, pp. 239-242. CrossRef D. Czyzewski, "Monitoring of the lighting conditions of a street illuminated with road lights equipped with LEDs," Przeglad Elektrotechniczny, vol. 86, no. 10, pp. 170-172, 2010. DirectLink S. Słomiński, "Identifying problems with luminaire luminance measurements for discomfort glare analysis," Lighting Research and Technology, vol. 48, no. 5, pp. 573-588, 2016 CrossRef D. Czyzewski, "Monitoring of the subsequent LED lighting installation in Warsaw in the years 2014-2015," in Proceedings of 2016 IEEE Lighting Conference of the Visegrad Countries, Lumen V4 2016, 2016, pp. 1-4, CrossRef F. Greffier, V. Muzet, V. Boucher, F. Fournela, and R. Dronneau, "Use of an imaging luminance measuring device to evaluate road lighting performance at different angles of observation," in Proceedings of the 29th Quadrennial Session of the CIE, 2019, pp. 553-562. CrossRef D. Czyżewski, "Comparison of luminance distribution on the lighting surface of power LEDs," Photonics Letters of Poland, vol. 11, no. 4, pp. 118-120, 2019, doi: 10.4302/plp.v11i4.966. CrossRef S. Zalewski, "Design of optical systems for LED road luminaires," Applied Optics, vol. 54, no. 2, pp. 163-170, 2015, doi: 10.1364/ao.54.000163. CrossRef D. Czyzewski, "Investigation of COB LED luminance distribution," in Proceedings of 2016 IEEE Lighting Conference of the Visegrad Countries, Lumen V4 2016, 2016, pp. 1-4, CrossRef M. Jongewaard, "Guide to selecting the appropriate type of light source model," in Proc.SPIE, Aug. 2002, vol. 4775, pp. 86-98, CrossRef D. Czyzewski, "Luminance distribution of LED luminous surface," Przeglad Elektrotechniczny, vol. 86, no. 10, pp. 166-169, 2010. DirectLink D. Czyżewski, "Research on luminance distributions of chip-on-board light-emitting diodes," Crystals, vol. 9, no. 12, pp. 1-14, 2019, CrossRef J. Fang, H. Xu, W. Lv, and M. R. Luo, "59-3: Proper Luminance of HDR TV system," in SID Symposium Digest of Technical Papers, 2016, pp. 806-808, CrossRef E. A. Cooper, H. Jiang, V. Vildavski, J. E. Farrell, and A. M. Norcia, "Assessment of OLED displays for vision research.," Journal of vision, vol. 13, no. 12, pp. 1-13, 2013 CrossRef C. D. Galatanu, "Improving the Luminance Measurement from Digital Images," in 2019 International Conference on Electromechanical and Energy Systems (SIELMEN), 2019, pp. 1-4. CrossRef M. Moeck and S. Anaokar, "Illuminance analysis from high dynamic range images," LEUKOS - Journal of Illuminating Engineering Society of North America, vol. 2, no. 3, pp. 211-228, 2006, CrossRef D. Wüller and H. Gabele, "The usage of digital cameras as luminance meters," in Digital Photography III, 2007, p. 65020U CrossRef I. Fryc and E. Czech, "Spectral correction of the measurement CCD array," Optical Engineering, vol. 41, no. 10, pp. 2402-2406, 2002, CrossRef I. Fryc, "Accuracy of spectral correction of a CCD array for luminance distribution measurement," in Proc. SPIE 5064, Lightmetry 2002: Metrology and Testing Techniques Using Light, 2003, pp. 38-42 CrossRef I. Fryc, "Analysis of the spectral correction errors of illuminance meter photometric head under the influence of the diffusing element," Optical Engineering, vol. 40, no. 8, pp. 1636-1640, 2001. CrossRef S. W. Brown, G. P. Eppeldauer, and K. R. Lykke, "Facility for spectral irradiance and radiance responsivity calibrations using uniform sources," Applied Optics, vol. 45, no. 32, pp. 8218-8237, 2006 CrossRef D. W. Allen, G. P. Eppeldauer, S. W. Brown, E. A. Early, B. C. Johnson, and K. R. Lykke, "Calibration and characterization of trap detector filter radiometers," in Proc. SPIE 5151. Earth Observing Systems VIII, 2003, pp. 471-479 CrossRef I. Lewin and J. O'Farrell, "Luminaire photometry using video camera techniques," Journal of the Illuminating Engineering Society, vol. 28, no. 1, pp. 57-63, 1999, CrossRef P. Fiorentin, P. Iacomussi, and G. Raze, "Characterization and calibration of a CCD detector for light engineering," IEEE Transactions on Instrumentation and Measurement, vol. 54, no. 1, pp. 171-177, 2005 CrossRef I. Fryc and E. Czech, "Application of optical fibers and CCD array for measurement of luminance distribution," in Proc. SPIE 5064, Lightmetry 2002: Metrology and Testing Techniques Using Light, 2003, pp. 18-21, CrossRef International Organization for Standardization, "Standard ISO 14524:2009 Photography - Electronic still-picture cameras - Methods for measuring opto-electronic conversion functions (OECFs)," International Organization for Standardization Publication, 2009. CrossRef I. Fryc, "Chosen properties of a photometric detector BPYP 07," in Proc. SPIE 4517, Lightmetry: Metrology, Spectroscopy, and Testing Techniques Using Light, 2001, vol. 4517, pp. 34-36 CrossRef D. Mozyrska, I. Fryc, and M. Wyrwas, "Nonlinear numerical models of spectral power distributions of black body," PRZEGLAD ELEKTROTECHNICZNY, vol. 87, no. 4, pp. 116-119, 2011. DirectLink D. Mozyrska and I. Fryc, "Spectroradiometric data interpolation and approximation-case study," PRZEGLAD ELEKTROTECHNICZNY, vol. 85, no. 11, pp. 253-256, 2009. CrossRef

2021 ◽  
Vol 13 (2) ◽  
pp. 25
Author(s):  
Dariusz Czyżewski ◽  
Irena Fryc

This paper presents that the opto-electrical characteristic of a typical CCD based digital camera is nonlinear. It means that digital electric signal of the camera's CCD detector - is not a linear function of the luminance value on camera's lens. The opto-electrical characteristic feature of a digital camera needs to be transformed into a linear function if this camera is to be used as a luminance distribution measurement device known as Imaging Luminance Measurement Device (ILMD). The article presents the methodology for obtaining the opto-electrical characteristic feature of a typical CCD digital camera and focuses on the non- linearity correction method. Full Text: PDF ReferencesD. Wüller and H. Gabele, "The usage of digital cameras as luminance meters," in Digital Photography III, 2007, p. 65020U CrossRef P. Fiorentin and A. Scroccaro, "Detector-Based Calibration for Illuminance and Luminance Meters-Experimental Results," IEEE Transactions on Instrumentation and Measurement, vol. 59, no. 5, pp. 1375-1381, 2010 CrossRef M. Shpak, P. Kärhä, G. Porrovecchio, M. Smid, and E. Ikonen, "Luminance meter for photopic and scotopic measurements in the mesopic range," Meas. Sci. Technol, vol. 25, no. 9, p. 95001, 2014, CrossRef P. Fiorentin, P. Iacomussi, and G. Rossi, "Characterization and calibration of a CCD detector for light engineering," IEEE Transactions on Instrumentation and Measurement, vol. 54, no. 1, pp. 171-177, 2005, CrossRef I. Fryc and E. Czech, "Application of optical fibers and CCD array for measurement of luminance distribution," in Proc. SPIE 5064, Lightmetry 2002: Metrology and Testing Techniques Using Light, 2003, pp. 18-21, CrossRef I. Fryc, "Accuracy of spectral correction of a CCD array for luminance distribution measurement," in Proc. SPIE 5064, Lightmetry 2002: Metrology and Testing Techniques Using Light, 2003, pp. 38-42, CrossRef I. Fryc, "Analysis of the spectral correction errors of illuminance meter photometric head under the influence of the diffusing element," Optical Engineering, vol. 40, no. 8, pp. 1636-1640, 2001. CrossRef D. Czyzewski, "Monitoring of the subsequent LED lighting installation in Warsaw in the years 2014-2015," in Proceedings of 2016 IEEE Lighting Conference of the Visegrad Countries, Lumen V4 2016, 2016, pp. 1-4, CrossRef M. Sielachowska, D. Tyniecki, and M. Zajkowski, "Measurements of the Luminance Distribution in the Classroom Using the SkyWatcher Type System," in 2018 VII. Lighting Conference of the Visegrad Countries (Lumen V4), 2018, pp. 1-5, CrossRef W. Malska and H. Wachta, "Elements of inferential statistics in a quantitative assessment of illuminations of architectural structures," in 2016 IEEE Lighting Conference of the Visegrad Countries (Lumen V4), 2016, pp. 1-6, CrossRef T. Kruisselbrink, R. Dangol, and A. Rosemann, "Photometric measurements of lighting quality: An overview," Building and Environment, vol. 138, pp. 42-52, 2018. CrossRef A. Borisuit, M. Münch, L. Deschamps, J. Kämpf, and J.-L. Scartezzini, "A new device for dynamic luminance mapping and glare risk assessment in buildings," in Proc. SPIE 8485. Nonimaging Optics: Efficient Design for Illumination and Solar Concentration IX, 2012, vol. 8485, p. 84850M, CrossRef I. Lewin and J. O'Farrell, "Luminaire photometry using video camera techniques," Journal of the Illuminating Engineering Society, vol. 28, no. 1, pp. 57-63, 1999, CrossRef D. Czyżewski, "Research on luminance distributions of chip-on-board light-emitting diodes," Crystals, vol. 9, no. 12, pp. 1-14, 2019, CrossRef K. Tohsing, M. Schrempf, S. Riechelmann, H. Schilke, and G. Seckmeyer, "Measuring high-resolution sky luminance distributions with a CCD camera," Applied optics, vol. 52, no. 8, pp. 1564-1573, 2013. CrossRef D. Czyzewski, "Investigation of COB LED luminance distribution," in Proceedings of 2016 IEEE Lighting Conference of the Visegrad Countries, Lumen V4 2016, 2016, pp. 1-4, CrossRef A. de Vries, J. L. Souman, B. de Ruyter, I. Heynderickx, and Y. A. W. de Kort, "Lighting up the office: The effect of wall luminance on room appraisal, office workers' performance, and subjective alertness," Building and Environment, 2018 CrossRef D. Silvestre, J. Guy, J. Hanck, K. Cornish, and A. Bertone, "Different luminance- and texture-defined contrast sensitivity profiles for school-aged children," Nature. Scientific Reports, vol. 10, no. 13039, 2020, CrossRef H. Wachta, K. Baran, and M. Leśko, "The meaning of qualitative reflective features of the facade in the design of illumination of architectural objects," in AIP Conference Proceedings, 2019, vol. 2078, no. 1, p. 20102. CrossRef CIE, "Technical raport CIE 231:2019. CIE Classification System of Illuminance and Luminance Meters.," Vienna, Austria, 2019. CrossRef DIN, "Standard DIN 5032-7:2017. Photometry - Part 7: Classification of illuminance meters and luminance meters.," 2017. DirectLink CEN, "EN 13032-1:2004. Light and lighting - Measurement and presentation of photometric data of lamps and luminaires - Part 1: Measurement and file format," Bruxelles, Belgium., 2004. DirectLink CIE, "Technical raport CIE 231:2019. CIE Classification System of Illuminance and Luminance Meters," Vienna, Austria, 2019 CrossRef E. Czech, D. Czyzewski, "The linearization of the relationship between scene luminance and digital camera output levels", Photonics Letter of Poland 13, 1 (2021). CrossRef


2020 ◽  
Vol 12 (4) ◽  
pp. 121
Author(s):  
Dariusz Czyżewski

Luminance measurements are used in a vast range of lighting technology fields. The author’s research has proved that measuring the luminance distribution on light source surface is the most challenging part of this process. The research has been conducted for a commercially available digital luminance distribution meter, with the goal of analyzing the influence of image focus settings and exposure parameters on the measured luminance values. It has been concluded that the incorrect image focus and inadequately matched exposure parameters (distance from the workpiece) contribute to quantitative changes in the information on luminance distribution on the LED surface and affect the precision the maximum luminance determination. Full Text: PDF ReferencesC. Xu, H. Cheng, and Y. Feng, "Optical design of rectangular illumination with freeform lenses for the application of LED road lighting," Frontiers of Optoelectronics, 2017, CrossRef D. Czyzewski, "LED substitutes of conventional incandescent lamps," Przeglad Elektrotechniczny, vol. 88, no. 11A, pp. 123-127, 2012. DirectLink W. R. Ryckaert, K. A. G. Smet, I. A. A. Roelandts, M. Van Gils, and P. Hanselaer, "Linear LED tubes versus fluorescent lamps: An evaluation," Energy and Buildings, 2012, CrossRef X.-H. Lee, I. Moreno, and C.-C. Sun, "High-performance LED street lighting using microlens arrays," Optics Express, 2013, CrossRef D. Czyzewski, "The street lighting luminaires with LEDs," Przeglad Elektrotechniczny, vol. 86, pp. 276-279, 2009. DirectLink D. Mozyrska, M. Wyrwas, and I. Fryc, "The determination of the LEDs colorimetric parameters, in the range of their operating temperature," Przeglad Elektrotechniczny, vol. 93, no. 4a, pp. 232-234, 2012. DirectLink J. Kowalska and I. Fryc, "Colour rendition quality of typical fluorescent lamps determined by CIE colour fidelity index and colour rendering index," Przeglad Elektrotechniczny, vol. 95, no. 7, pp. 94--97, 2019, CrossRef J. Kowalska, "Analysis of parameters describing the quality of the color rendering of light sources according to the IES TM-30-15 and the CIE 013.3-1995," Przeglad Elektrotechniczny, vol. 93, no. 6, pp. 50--54, 2017, CrossRef K. Houser, M. Mossman, K. Smet, and L. Whitehead, "Tutorial: Color Rendering and Its Applications in Lighting," LEUKOS - Journal of Illuminating Engineering Society of North America, vol. 12, no. 1-2, pp. 7-26, 2016, CrossRef S. Słomiński, "Identifying problems with luminaire luminance measurements for discomfort glare analysis," Lighting Research and Technology, 2016, CrossRef D. Czyzewski, "Investigation of COB LED luminance distribution," 2016, CrossRef M. Jongewaard, "Guide to selecting the appropriate type of light source model," in Proc.SPIE, Aug. 2002, vol. 4775, CrossRef D. Czyzewski, "Selected problems of defining the luminous area of electroluminescent diodes," Przeglad Elektrotechniczny, vol. R. 84, nr 8, pp. 125-128, 2008. DirectLink C. D. Galatanu, "Improving the Luminance Measurement from Digital Images," in 2019 International Conference on Electromechanical and Energy Systems (SIELMEN), 2019, pp. 1-4. CrossRef I. Fryc and E. Czech, "Application of optical fibers and CCD array for measurement of luminance distribution," in Proc. SPIE 5064, Lightmetry 2002: Metrology and Testing Techniques Using Light, 2003, pp. 18-21, CrossRef I. Fryc and E. Czech, "Spectral correction of the measurement CCD array," Optical Engineering, 2002, CrossRef I. Fryc, "Angular characteristics of a silicon detector spectral sensitivity corrected by an absorption filter," in Proc. SPIE 4517, Lightmetry: Metrology, Spectroscopy, and Testing Techniques Using Light, 2001, pp. 42-45, CrossRef I. Fryc, "Accuracy of spectral correction of a CCD array for luminance distribution measurement," in Proc. SPIE 5064, Lightmetry 2002: Metrology and Testing Techniques Using Light, 2003, pp. 38-42, CrossRef M. Moeck and S. Anaokar, "Illuminance analysis from high dynamic range images," LEUKOS - Journal of Illuminating Engineering Society of North America, pp. 211-228, 2006, CrossRef D. Czyżewski, "Research on luminance distributions of chip-on-board light-emitting diodes," Crystals, 2019, CrossRef


2013 ◽  
Vol 20 (4) ◽  
pp. 623-634 ◽  
Author(s):  
Urszula Joanna Błaszczak

Abstract The article proposes a method for measuring discomfort glare which uses numerical description of the phenomenon in the form of a digital luminance distribution map recorded on a CCD array. Essential procedures for determining partial quantities which are necessary for calculation of UGR index are discussed in detail, along with techniques for measuring position index and size of light sources, with regard to the parameters of the registering system and coordinates of the images of the sources on the array.


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5459
Author(s):  
Wei Deng ◽  
Eric R. Fossum

This work fits the measured in-pixel source-follower noise in a CMOS Quanta Image Sensor (QIS) prototype chip using physics-based 1/f noise models, rather than the widely-used fitting model for analog designers. This paper discusses the different origins of 1/f noise in QIS devices and includes correlated double sampling (CDS). The modelling results based on the Hooge mobility fluctuation, which uses one adjustable parameter, match the experimental measurements, including the variation in noise from room temperature to –70 °C. This work provides useful information for the implementation of QIS in scientific applications and suggests that even lower read noise is attainable by further cooling and may be applicable to other CMOS analog circuits and CMOS image sensors.


1985 ◽  
Vol 49 ◽  
Author(s):  
K. Kempter ◽  
H. Wieczrek ◽  
M. Hoheisel

AbstractThe short response times required for image sensors demand blocking contacts at the sensor cell. It was found that the junctions between transparent electrodes (ITO or a thin palladium film) and the metallic back electrode with a-Si:H form blocking contacts yielding photocurrent decay times of the order of some microseconds. The two different time regimes observed for the decay are interpreted as being limited by the drift and the release of holes respectively.


2007 ◽  
Vol 19 (3) ◽  
pp. 290-297
Author(s):  
Naotaka Hikosaka ◽  
◽  
Kei Watanabe ◽  
Kazunori Umeda

We discuss the recognition of obstacles by detecting a plane using relative disparity maps obtained from a small range image sensor incorporated in a humanoid. Our proposal enables easy plane detection and obstacle recognition using relative disparity from a reference plane alone. We built an integrated controller that feeds back obstacle information to the humanoid. We confirmed through experiments that the humanoid recognized obstacles and autonomously stopped walking.


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2073 ◽  
Author(s):  
Kazunari Kurita ◽  
Takeshi Kadono ◽  
Satoshi Shigematsu ◽  
Ryo Hirose ◽  
Ryosuke Okuyama ◽  
...  

We developed silicon epitaxial wafers with high gettering capability by using hydrocarbon–molecular–ion implantation. These wafers also have the effect of hydrogen passivation on process-induced defects and a barrier to out-diffusion of oxygen of the Czochralski silicon (CZ) substrate bulk during Complementary metal-oxide-semiconductor (CMOS) device fabrication processes. We evaluated the electrical device performance of CMOS image sensor fabricated on this type of wafer by using dark current spectroscopy. We found fewer white spot defects compared with those of intrinsic gettering (IG) silicon wafers. We believe that these hydrocarbon–molecular–ion–implanted silicon epitaxial wafers will improve the device performance of CMOS image sensors.


Sign in / Sign up

Export Citation Format

Share Document