scholarly journals Design, Construct and Evaluation of a Single Row Hand-Pushed Mechanical Weed Control Machine

2021 ◽  
Vol 25 (3) ◽  
pp. 401-406
Author(s):  
A. Saleh ◽  
M.L. Suleiman

Weed control is one of the major problems in crop and vegetable production in Nigeria. Most of the peasant farmers use manual weeders in their cultivation, a process that is costly, labour intensive and time consuming. The process does not also give the farmer adequate returns to enable him breakeven. It is, therefore, necessary to design a weeding equipment which minimize the human effort and provide efficient work output for the peasant farmer. This study focus on designing, construction and evaluation of a hand-pushed weed control machine that would eliminate the challenges being faced by the farmer in weeding. Materials selected to suit the construction of the weeder are durable and locally available, easily replaced if damaged and at affordable cost. They include mild steel (3mm, 5mm), 30 mm circular (hollow) pipes, 10 mm diameter steel rod, and 40 cm pneumatic tyre. The developed weeding machine was evaluated in the experimental farm of IAR with impressive results. It works well in sandy loam soil of about 25.65% moisture content and requires less labour force compared to the manual hoe. It has about 84.7% weeding efficiency, 0.0129ha/hr effectivefield capacity, 0.019ha/hr theoretical field capacity and 68% field efficiency. The average cost of the weeding is N21, 000:00. Keywords: Manual weeding, hand-pushed weeder, weeding efficiency, field efficiency

Author(s):  
Kalpana Pudasaini ◽  
Nanjappa Ashwath ◽  
Kerry Walsh ◽  
Thakur Bhattarai

A factorial pot experiment was conducted using two types of soils (sandy loam and red clay loam) that are commonly used for commercial vegetable production in Bundaberg, region of Central Queensl and Australia. The soils were amended with 0, 25, 50 and 75 t/ha of green waste biochar and minimum doses of N, P and K (30 kg/ha, 30 kg/ha and 40 kg/ha respectively). After two weeks of plant establishment, the pots were leached with 1.5 litres of deionised water at week intervals, and cation concentrations of the leachate were determined. In 25 t/ha biochar treatment, there was a significant (P<0.05) reduction in K and Ca leaching by 40% and 26% respectively from sandy loam, and of Ca by 23% from the red clay loam. Soil water holding capacity and soil organic carbon were also increased in both biochar treated soils. After 12 weeks of growth, shoot weight was signifi cantly (P<0.05) higher in 25 t/ha biochar-treated sandy loam and red clay loam (32% and 31% respectively). These results clearly demonstrated that a higher yield of capsicum can be achieved from green waste biochar application in sandy loam and red clay loam at 25 t/ha biochar.DOI: http://dx.doi.org/10.3126/hn.v11i1.7221 Hydro Nepal Special Issue: Conference Proceedings 2012 pp.86-90


Weed Science ◽  
1990 ◽  
Vol 38 (3) ◽  
pp. 267-272 ◽  
Author(s):  
Steven G. Russell ◽  
Thomas J. Monaco ◽  
Jerome B. Weber

Field trials were conducted in 1986 and 1987 to determine the effects of moisture on herbicidal activity of cinmethylin applied preemergence at 0.0, 0.3, 0.6, and 0.9 kg ai ha to both dry and moist sandy loam soil. Herbicide application was followed by varying amounts of irrigation. Weed species included velvetleaf, prickly sida, green foxtail, and barnyardgrass. When cinmethylin was applied to a moist soil or when 2.5 cm of irrigation was applied 5 days after cinmethylin application to a dry soil, overall weed control was reduced. Optimum weed control resulted from cinmethylin application to dry soil followed either by a 2.5-cm irrigation within 8 h or a 7.6-cm irrigation within 36 h.


Weed Science ◽  
1983 ◽  
Vol 31 (2) ◽  
pp. 236-241 ◽  
Author(s):  
John H. Miller ◽  
Lyle M. Carter ◽  
Charles Carter

Tillage plus trifluralin (α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine) and prometryn [2,4-bis (isopropylamino)-6-(methylthio)-s-triazine] and tillage plus trifluralin and fluometuron [1,1-dimethyl-3-(α,α,α-trifluoro-m-tolyl)urea] applied as soil-incorporated preplanting treatments were compared with tillage alone in cotton (Gossypium hirsutumL.) grown in 51-cm and 102-cm rows on fine sandy loam soil. Over 3 yr, cotton grown in 51-cm rows yielded 15% more than cotton grown in 102-cm rows. Final cotton emergence was not altered by weed-control treatment or by planting pattern. Weed-control treatments with herbicides provided essentially complete, season-long control of grass and broadleaf weeds. At cotton layby, more weeds were in no-herbicide plots with 51-cm rows compared with 102-cm rows, but at cotton harvest numbers of weeds in both row patterns were essentially equal.


Weed Science ◽  
1968 ◽  
Vol 16 (4) ◽  
pp. 494-498 ◽  
Author(s):  
A. F. Wiese ◽  
E. B. Hudspeth

In a 3-year study on four soil types, subsurface application just ahead of a planter with a device that removed the top from the bed, applied a band of spray, and covered the band with soil reduced weed control in cotton (Gossypium hirsutum L.) obtained with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (diuron), 2,4-bis(isopropylamino)-6-methylmercapto-s-triazine (prometryne), 3-(hexahydro-4,7-methanoindan-5-yl)-1,1-dimethylurea (norea), dimethyl-2,3,5,6-tetrachloroterephthalate (DCPA), and 1,1-dimethyl-3(α,α,α,-trifluoro-m-tolyl)urea (fluometuron) compared to applications on the soil surface. This machine improved weed control with α,α,α,-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine (trifluralin). Shallow incorporation, with two helical blades, after planting increased weed control with trifluralin, diuron, and DCPA by 10% or more over the surface applications. This incorporator increased weed control obtained with prometryne and norea 5%. Very shallow incorporation, with metal tines, after planting improved weed control obtained with trifluralin and DCPA 18 and 11%, respectively. Weed control with norea was increased 7%, but metal tines did not appreciably affect weed control obtained with prometryne, diuron, or fluometuron. Compared to surface applications, incorporation increased cotton injury with diuron, norea, prometryne, and fluometuron on sandy loam soil.


Soil Research ◽  
2010 ◽  
Vol 48 (2) ◽  
pp. 120 ◽  
Author(s):  
Pichu Rengasamy

Pot experiments were conducted using a sandy loam soil and various electrolyte solutions such as NaCl, CaCl2, Na2SO4, and Hoagland nutrient solution containing all macro- and micro-nutrient elements in appropriate proportions, inducing different electrical conductivity (EC) levels of the soil solution during the growth of Krichauff wheat while the water content in the pot soils was maintained at field capacity. The resulting differences in dry matter production after 40 days of growth clearly indicated the continuous operation of osmotic effect as the EC of the soil solution increased from 0.7 to 41.0 dS/m. However, the osmotic effect became dominant and severely restricted plant growth when the soil solution EC increased above a ‘threshold value’, which was 25 dS/m, corresponding to an osmotic pressure of 900 kPa, in this experiment. Below this EC value, particularly at low EC values, ionic effects due to Na+, Ca2+, SO42–, and Cl– were also evident, but it could not be concluded whether these effects were due to toxicity or ion imbalance. The osmotic effect at EC values above the threshold resulted in greatly reduced water uptake from pot soils, the unused water being in the range 89–96% of the field capacity of the soil. Water use efficiency is a major factor in profitable and sustainable dryland agriculture. Both soil management and selection and breeding of salt-tolerant plants should concentrate on ensuring that the threshold EC value for severe osmotic effects is not reached under field conditions.


1978 ◽  
Vol 58 (2) ◽  
pp. 347-356
Author(s):  
W. N. BLACK

Irrigation and nitrogen (N) requirements of a natural pasture sward were studied on a Charlottetown sandy loam soil over a 5-yr period. The soil moisture content at the 0-to 15- and 15- to 30-cm depths was determined at from 7- to 10-day intervals, while irrometer soil moisture readings at 15-, 30-, and 45-cm depths were recorded more frequently during the grazing seasons. Soil moisture content in irrigated plots averaged 92 and 94% of field capacity, respectively, at 0- to 15- and 15- to 30-cm sampling depths. In non-irrigated plots, corresponding values were 77 and 82%. N treatments resulted in significant dry matter (DM) increases over untreated plots. Yield differences among plots receiving 56, 84, and 112 kg of N/ha in mid-June and again in mid-August were not significant. Early spring and September applications of N at 56 kg/ha, combined with mid-June and early August supplements of N at 84 kg/ha were superior to all other treatments in prolonging the grazing period. Neither irrigation nor N affected the characteristic yield decline of naturally occurring forage species in mid- and late-season. Mean DM production for the 5-yr period, and for years, showed no significant N treatment × moisture level interaction. While irrigation failed to increase yields significantly, livestock preferred to graze the irrigated plots. As a result of less competition from grasses, volunteer white clover became better established, and constituted a larger percentage of the sward than on non-irrigated plots.


2008 ◽  
Vol 23 (2) ◽  
pp. 107-114
Author(s):  
Milena Simic ◽  
Nebojsa Momirovic ◽  
Zeljko Dolijanovic ◽  
Zeljko Radosevic

The effects of different herbicide combinations: control (1), alachlor+linuron (2), and alachlor+linuron+imazethapyr (3) were investigated in double-cropped soybean grown in two row spacing variants, 38 cm and 76 cm, under conventional tillage (CT) or no-tillage (NT). In trials conducted on a sandy loam soil at Zemun Polje, high weediness had a negative effect of on the yield of double-cropped soybean, especially at the higher row spacing tested and with no-tillage. Regression and correlation data revealed a dependence of weediness in double-cropped soybean on tillage system and herbicide combination, and dependence of soybean yield on tillage system.


Weed Science ◽  
1994 ◽  
Vol 42 (3) ◽  
pp. 411-417 ◽  
Author(s):  
Douglas D. Buhler ◽  
William C. Koskinen ◽  
Marvin M. Schreiber ◽  
Jianying Gan

Research was conducted to determine the effect of starch encapsulation on soil dissipation and weed control with alachlor, metolachlor, and atrazine on an Estherville sandy loam in the field. Starch encapsulation increased persistence of alachlor in the surface 15 cm of soil compared to the emulsifiable concentrate formulation during the first 60 d after treatment More alachlor was detected 30 to 75 cm deep with emulsifiable concentrate than the starch-encapsulated formulation 30 d after treatment. Little alachlor was detected below 15 cm thereafter. Starch encapsulation also increased persistence of metolachlor in the surface 15 cm, but reduced concentrations at 15 to 30 cm compared to the emulsifiable concentrate 30 d after treatment. By 120 and 340 d after treatment, metolachlor concentrations at 15 to 30 cm were greater with starch-encapsulated than emulsifiable concentrate formulation. Starch encapsulation greatly increased atrazine persistence in the surface 15 cm compared to the dry flowable formulation. Although encapsulation increased atrazine concentration in the surface 15 cm, it reduced the concentration below 15 cm compared to the dry flowable formulation 30 and 60 d after treatment However, by 120 and 340 d after treatment, starch encapsulation often resulted in greater atrazine concentrations below 15 cm than the dry flowable formulation. Control of green foxtail and redroot pigweed with starch-encapsulated herbicides was similar or superior to the commercial formulations.


2012 ◽  
Vol 12 (3) ◽  
pp. 136-145 ◽  
Author(s):  
KHAWAR JABRAN ◽  
EHSANULLAH ◽  
MUBSHAR HUSSAIN ◽  
MUHAMMAD FAROOQ ◽  
MUHAMMAD BABAR ◽  
...  

2016 ◽  
Vol 14 (2) ◽  
pp. e1103 ◽  
Author(s):  
Leila Esmaeelnejad ◽  
Mehdi Shorafa ◽  
Manouchehr Gorji ◽  
Seiyed M. Hosseini

In spite of many studies that have been carried out, there is a knowledge-gap as to how different sizes of biochars alter soil properties. Therefore, the main objective of this study was to investigate the effects of different sizes of biochars on soil properties. The biochars were produced at two pyrolysis temperatures (350 and 550°C) from two feedstocks (rice husk and apple wood chips). Produced biochars were prepared at two diameters (1-2 mm and <1 mm) and mixed with soil at a rate of 2% (w/w). Multiple effects of type, temperature and size of biochars were significant, so as the mixture of soil and finer woodchip biochars produced at 550°C had significant effects on all soil properties. Soil aggregation and stabilization of macro-aggregates, values of mean weight diameter and water stable aggregates were improved due to increased soil organic matter as binding agents and microbial biomass. In addition, plant available water capacity, air capacity, S-index, meso-pores and water retention content were significantly increased compared to control. But, saturated hydraulic conductivity (Ks) was reduced due to blockage of pores by biochar particles, reduction of pore throat size and available space for flow and also, high field capacity of biochars. So, application of biochar to soil, especially the finest particles of high-tempered woody biochars, can improve physical and hydrological properties of coarse-textured soils and reduce their water drainage by modification of Ks.


Sign in / Sign up

Export Citation Format

Share Document