hoagland nutrient solution
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 16)

H-INDEX

8
(FIVE YEARS 3)

Toxics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 36
Author(s):  
Ilektra Sperdouli ◽  
Ioannis-Dimosthenis S. Adamakis ◽  
Anelia Dobrikova ◽  
Emilia Apostolova ◽  
Anetta Hanć ◽  
...  

Salvia sclarea L. is a Cd2+ tolerant medicinal herb with antifungal and antimicrobial properties cultivated for its pharmacological properties. However, accumulation of high Cd2+ content in its tissues increases the adverse health effects of Cd2+ in humans. Therefore, there is a serious demand to lower human Cd2+ intake. The purpose of our study was to evaluate the mitigative role of excess Zn2+ supply to Cd2+ uptake/translocation and toxicity in clary sage. Salvia plants were treated with excess Cd2+ (100 μM CdSO4) alone, and in combination with Zn2+ (900 μM ZnSO4), in modified Hoagland nutrient solution. The results demonstrate that S. sclarea plants exposed to Cd2+ toxicity accumulated a significant amount of Cd2+ in their tissues, with higher concentrations in roots than in leaves. Cadmium exposure enhanced total Zn2+ uptake but also decreased its translocation to leaves. The accumulated Cd2+ led to a substantial decrease in photosystem II (PSII) photochemistry and disrupted the chloroplast ultrastructure, which coincided with an increased lipid peroxidation. Zinc application decreased Cd2+ uptake and translocation to leaves, while it mitigated oxidative stress, restoring chloroplast ultrastructure. Excess Zn2+ ameliorated the adverse effects of Cd2+ on PSII photochemistry, increasing the fraction of energy used for photochemistry (ΦPSII) and restoring PSII redox state and maximum PSII efficiency (Fv/Fm), while decreasing excess excitation energy at PSII (EXC). We conclude that excess Zn2+ application eliminated the adverse effects of Cd2+ toxicity, reducing Cd2+ uptake and translocation and restoring chloroplast ultrastructure and PSII photochemical efficiency. Thus, excess Zn2+ application can be used as an important method for low Cd2+-accumulating crops, limiting Cd2+ entry into the food chain.


2021 ◽  
Vol 5 (4) ◽  
pp. 846-853
Author(s):  
Fikret YAŞAR ◽  
Özlem ÜZAL

The purpose of the study was to determine the relationship between the messenger molecule Nitric oxide (NO) and antioxidative enzyme (SOD: Superoxide Dismutase; CAT: Catalase; APX: Ascorbate Peroxidase) activities in some metabolic changes that occur under the effect of drought stress in plants, to determine the possible roles of Nitric Oxide and to obtain complementary information. The experiment conducted in a controlled environment, and plant were cultured in containers containing Hoagland nutrient solution. For drought stress application, 10% Polyethylene Glycol (PEG 6000) was added to the nutrient solution, which is equivalent to -0.40 MPa osmotic potential. Before the drought stress is applied, pepper seedlings of Demre cv were pre-treated with different doses of Sodium Nitroprusside (SNP) and Carboxy-PTIO (potassium salt) (cPTIO) (SNP 0.01, SNP 1, SNP 100 and SNP 0.01 + cPTIO, SNP + cPTIO, SNP 100+ cPTIO). On the 10th day of the drought application, the growth parameters of the plants; the plant fresh weights and their Antioxidative Enzyme Activities (SOD, CAT, APX) were determined. In terms of plant growth parameters, both plant growth and antioxidant anzyme activities of plants pretreated with 0.01 and 1 doses of SNP were lower than the high dose of SNP and the PEG application without pretreatment. The reason for the low enzyme activities in these applications can be attributed to factors such as the excess accumulation of organic acids such as proline in the cells of the plants and the decrease in H2O2 and O-2 levels in the presence of SNP.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2104
Author(s):  
Lushan Li ◽  
Hui Zhang ◽  
Xiaohong Chai ◽  
Shouhui Wei ◽  
Shilei Luo ◽  
...  

Glucosinolates (GLS) are important anionic secondary metabolites that are rich in thiocyanin in cabbage, Brassica oleracea L. var. capitata. GLS are important in food flavor, plant antimicrobial activity, insect resistance, disease resistance, and human anti-cancer effects. Sulfur is an important raw material of GLS, directly affecting their synthesis. However, the mechanism of sulfur regulation of GLS biosynthesis in cabbage is unclear. In the present study, cabbage was treated with sulfur-free Hoagland nutrient solution (control; −S), and normal Hoagland nutrient solution (treatment; +S). Through joint transcriptomic and proteomic analyses, the effect of exogenous S on GLS synthesis was explored. S application induced GLS accumulation; especially, indole glycosides. Transcriptome analysis showed that +S treatment correlated positively with differentially expressed genes and proteins involved in amino acid biosynthesis, carbon metabolism, and plant hormone signal transduction. Compared with −S treatment, the mRNA expression of GLS synthesis genes (CYP, GSTU, UGT, and FMO) and those encoding transcription factors (RLK, MYB, AP2, bHLH, AUX/IAA, and WRKY) were upregulated significantly in the +S group. Combined transcriptome and proteome analysis suggested that the main pathway influenced by S during GLS synthesis in cabbage is amino acid biosynthesis. Moreover, S treatment activated GLS synthesis and accumulation.


2021 ◽  
Vol 117 (2) ◽  
pp. 1
Author(s):  
Zhaleh SOHEILIKHAH ◽  
Nasser KARIMI ◽  
Masoud MODARRESI ◽  
Seyed Yahya SALEHI-LISAR ◽  
Ali MOVAFEGHI

Salt stress is one of the major limiting factors for plant production, and the quality of medicinal plants is also affected by soil salinity. Hyssop (Hyssopus officinalis L.) plants were cultivated for four weeks in perlite: sand and irrigated with Hoagland nutrient solution containing 0, 50, 100, 150, and 200 mM NaCl. Plants growth was decreased by salt stress while the leaf relative water content was not affected, and the chlorophyll content decreased only by the highest salt concentration (200 mM). Sodium was accumulated at small amounts, indicating a high ability of this species to exclude salt. Soluble sugars and proline were accumulated up to 1.6 and 4.5 fold, respectively. The antioxidant enzymes activity (peroxidase, catalase, ascorbate peroxidase) were increased by the salt treatments, particularly in the leaves. The levels of secondary metabolites (saponins, phenolics, flavonoids, anthocyanins, and iridoids) were all increased under salt stress, and the total antioxidant capacity of alcoholic extract of the leaves and roots was significantly higher in the salt-treated compared with control plants. Our results showed that hyssop is a salt-tolerant species, and the quality of this medicinal plant is improved when grown under saline conditions.


HortScience ◽  
2021 ◽  
pp. 1-6
Author(s):  
Nianwei Qiu ◽  
Li Tian ◽  
Xifeng Yan ◽  
Haoyu Dong ◽  
Mengyu Zhang ◽  
...  

The structure and chemical properties of strontium and calcium are similar. To study the interplay between calcium and strontium in plants, different concentrations of SrCl2 (0, 1, 4, and 10 mmol·L−1) were added to the Hoagland nutrient solution with 4 mmol·L−1 Ca2+ (normal level Ca2+) or 0.4 mmol·L−1 Ca2+ (low-level Ca2+), which were used to cultivate Chinese cabbage seedlings. Under the low-level calcium condition, strontium not only did not promote the growth of Chinese cabbage but showed more severe toxicity compared with that under the normal calcium condition. Under normal calcium condition, although the growth of Chinese cabbage was significantly inhibited by 4 mmol·L−1 strontium, strontium did not show significant toxicity. However, under the low-level calcium condition, 1 mmol·L−1 strontium caused a significant decline of plant biomass and photosynthetic activity. Sr2+ showed a competitive inhibitory effect on the absorption of Ca2+, and strontium was more easily absorbed by Chinese cabbage. Under the low-level calcium condition, strontium aggravated the inhibition of calcium absorption. The inhibitory effect of strontium on plant growth was significantly related to the calcium content in Chinese cabbage. Strontium cannot replace the function of calcium in plants under calcium-deficient conditions.


2021 ◽  
Vol 16 (1) ◽  
pp. 785-792
Author(s):  
Zhenming Zhang ◽  
Huaguang Hu

Abstract Salt stress affects plant physiology, development, and growth. This research investigated varied salinity levels on growth traits and ions accumulation of four zoysiagrasses and aimed to identify phenotypic traits associated with variability in salinity tolerance. In this study, “S001” zoysiagrass (Zoysia sinica), “Diamond” zoysiagrass (Zoysia matrella), “J026” zoysiagrass (Zoysia japonica), and “M001” zoysiagrass (Zoysia macrostachya) were grown in plastic pots and exposed to 1/2 Hoagland nutrient solution amended with different amounts of NaCl for 120 days. At the end of the experiment, growth traits and ion contents were determined. The results showed that the salt-tolerance of four zoysiagrasses ranked as “M001” > “Diamond” > “J026” > “S001” according to percent green leaf canopy area (GLCA) after 120 days of salinity treatment. Although dry leaf weight, leaf length/width, and shoot height were significantly decreased by salinity treatments for all turfgrasses, the salt-tolerant species had a smaller drop. Besides, ions secretion capacity and Na+ concentration in leaf and root increased, but K+ concentration together with leaf and root K+/Na+ ratios decreased with the increasing concentration of the salinity. However, the salt-tolerant species exhibited strong K+ absorption and transportation ability and a high salt secretion capacity. The results indicated that growth traits and ions regulation were related to variability in tolerance of diverse zoysiagrasses to salt stress.


Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1636
Author(s):  
Sinda Ben Mariem ◽  
Jon González-Torralba ◽  
Concha Collar ◽  
Iker Aranjuelo ◽  
Fermín Morales

The availability and management of N are major determinants of crop productivity, but N excessive use has an associated agro-ecosystems environmental impact. The aim of this work was to investigate the influence of N fertilization on yield and grain quality of 6 durum wheat genotypes, selected from 20 genotypes as high- and low-yielding genotypes. Two N levels were applied from anthesis to maturity: high (½ Hoagland nutrient solution) and low (modified ½ Hoagland with one-third of N). Together with the agronomic characterization, grain quality analyses were assessed to characterize carbohydrates concentration, mineral composition, glutenin and gliadin concentrations, polyphenol profile, and anti-radical activity. Nitrogen supply improved wheat grain yield with no effect on thousand-grain weight. Grain soluble sugars and gluten fractions were increased, but starch concentration was reduced, under high N. Mineral composition and polyphenol concentrations were also improved by N application. High-yielding genotypes had higher grain carbohydrates concentrations, while higher concentrations in grain minerals, gluten fractions, and polyphenols were recorded in the low-yielding ones. Decreasing the amount of N to one-third ensured a better N use efficiency but reduced durum wheat agronomic and quality traits.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ahmad Azeem ◽  
Qaiser Javed ◽  
Jianfan Sun ◽  
Muhammad I. Nawaz ◽  
Ikram Ullah ◽  
...  

AbstractTwo okra cultivars (Chinese green and Chinese red) were subjected to salt stress for 12 weeks. Salt stress treatments T1 (20.8 mM), T2 (103.3 mM), T3 (180.0 mM) and T4 (257.0 mM) were applied with equal proportions of NaCl and CaCl2 in Hoagland nutrient solution. Salt stress significantly affects photosynthesis, transpiration, stomatal conductance, water use efficiency, water potential, plant height, root length, fresh weight and dry weight of both okra cultivars in every salt stress treatment. At T2, T3 and T4, Chinese red plants maintained their physiological and growth traits up to Weeks 9, 6 and 3, respectively; beyond these salt-stress durations, growth reductions were found. Similarly, Chinese green plants maintained their growth up to Weeks 9, 5 and 3, respectively, at T2, T3 and T4 treatments. In comparison, Chinese red showed more tolerance than Chinese green. According to the results, the third and ninth weeks are the tolerance threshold limits for both cultivars to sustain their physiological traits and growth under T4 and T2 salinity treatments. Similarly, Chinese red has the threshold limit to bear T3 treatment up to the eighth week and Chinese green, up to the fifth week. Thus, this study provides a new method to determine the threshold value of crops with respect to duration under salt stress. This finding would be useful in the field of water saving and utilisation of saline water resources.


Author(s):  
Apurba Pal ◽  
Debjani Dutta ◽  
Anjan Kumar Pal ◽  
Sunil Kumar Gunri

Aims: To better understand the physiological and biochemical mechanisms in the light of antioxidative enzymes activity under salinity stress between tolerant and susceptible genotypes of groundnut. Study Design: Completely Randomized Design. Place and Duration of Study: The laboratory experiment was carried out in the departmental laboratory of Plant Physiology, Bidhan Chandra Krishi Viswavidyalaya (BCKV), Mohanpur, Nadia, and West Bengal during the year 2017-18. Methodology: A controlled study was conducted to screen 26 genotypes of groundnut under 200 mM NaCl salinity stress. Fourteen-day old seedlings were subjected to salinity treatment. For this, the modified Hoagland nutrient solution containing 200 mM NaCl (osmotic potential: -0.8 MPa) was applied in each case and the pH was adjusted to 6.3. The treatments were repeated on every third day. Control set without salinity stress was also maintained similarly in each case for comparison of results. Results: The salt tolerance index or STI of the genotypes ranged from 47.57% to 96.40%. Out of all the genotypes KDG-197 (STI= 96.40%) was found to be the most tolerant under a salinity stress of 200 mM NaCl and it was closely followed by R 2001-2 (STI=87.92%), VG 315 (STI=84.05%), TCGS 1157 (STI=77.59%) and TG 51 (STI=73.67%). While the genotypes Girnar 3 (STI= 47.57%), OG 52-1 (STI=49.09%), TVG 0856 (STI= 49.28%) and J 86 (STI= 50.66%) were the most susceptible genotypes based on their relative performance under stress in respect of total dry weight. It has been noted further that, out of the nine genotypes, enhancement of antioxidative enzyme like super oxide dismutase (SOD), guaiacol peroxidase (GPOX) and catalase (CAT) activity was recorded maximally in tolerant genotype KDG 197 (64.18%, 71.74% and 52.82% increase over control respectively) and R 2001-2 (53.68 %, 93.48% and 53.96 % increase over control respectively) but the activity of these enzyme in the four susceptible genotypes declined considerably under salinity treatment. Conclusion: Tolerant genotypes of groundnut in general registered much higher activities of antioxidative enzymes in their leaves as compared to the susceptible genotype under high salinity stress.


2020 ◽  
Vol 48 (2) ◽  
pp. 967-977
Author(s):  
Neslihan SEVGIN ZIREK ◽  
Ozlem UZAL

Morphological and biochemical effects of different magnesium (Mg) doses on pepper plants under salt stress were investigated in this study. Experiments were conducted under controlled conditions of a climate cabin at 25 oC temperature, 70% relative humidity and 16/8 hours light/dark photoperiod. The developmental and metabolic effects of different magnesium doses in plants under salt stress were investigated by examining leaf antioxidant enzyme activities, Malondialdehyde (MDA) levels and chlorophyll contents. Seedlings of ‘Demre’ pepper cultivar (Capsicum annuum L. cv. ‘Demre’) were grown in Hoagland nutrient solution supplemented with 100 mM NaCl to generate salt stress. Besides salt treatments, different Mg doses (Mg 1 = 24.64 ppm, Mg 2 = 49.28 ppm, Mg 3 = 73.92 ppm, Mg 4 = 98.56 ppm, Mg 5 = 123.20 ppm) were applied to plants. On the 20th day of salt treatments, the total weight of the plants which is one of the growths and development parameters of pepper plants was measured, and plant samples were taken for analyses. A slight increase was observed in total weights of salt-treated plants with increasing Mg doses. The greatest plant weight was obtained from Mg 4 + salt treatments. It was observed that increasing Mg doses had positive effects on the development of plants under salt stress. Chlorophyll contents and antioxidant enzymes activities increased and MDA (malondialdehyde) levels, the product of lipid peroxidation, which indicates the amount of damage to plant cells, decreased with increasing Mg doses. Present measurements and analyses and resultant findings revealed that Mg treatments at increasing doses partially alleviated negative effects of salt stress on pepper seedlings.


Sign in / Sign up

Export Citation Format

Share Document