scholarly journals Electrostatic potential functions applied to hydrogen bonding

2006 ◽  
Vol 4 (1) ◽  
Author(s):  
A Uzairu ◽  
GFS Harrison
2021 ◽  
Author(s):  
Thufail M. Ismail ◽  
Neetha Mohan ◽  
P. K. Sajith

Interaction energy (Eint) of hydrogen bonded complexes of nitroxide radicals can be assessed in terms of the deepest minimum of molecular electrostatic potential (Vmin).


2014 ◽  
pp. 87-122
Author(s):  
Sonia Ilieva ◽  
Boris Galabov

The chapter surveys mostly original work of the authors on the application of the electrostatic potential at nuclei (EPN) as a reactivity index in quantifying hydrogen bonding as well as different reactions of organic compounds. The EPN index was defined and introduced by E. B. Wilson (1962). However, it was first applied as a reactivity index much later in works from our laboratory (Bobadova-Parvanova & Galabov, 1998; Galabov & Bobadova-Parvanova, 1999; Dimitrova, Ilieva, & Galabov, 2002; Cheshmedzhieva, Ilieva, Hadjieva, Trayanova, & Galabov, 2009; Galabov, Cheshmedzhieva, Ilieva, & Hadjieva, 2004; Galabov, Ileiva, & Schaefer, 2006; Galabov, Nikolova, Wilke, Schaefer, & Allen, 2008; Galabov, Ilieva, Hadjieva, Atanasov, & Schaefer, 2008; Koleva, Galabov, Wu, Schaefer, & Schleyer, 2009). Numerous applications showed that the EPN index, an accurate quantum mechanical quantity, predicts with remarkable accuracy the energy shifts accompanying hydrogen bonding. The theoretically evaluated EPN descriptor correlates also excellently with experimental and theoretically evaluated kinetic parameters for a number of important organic reactions. Based on these findings an efficient computational approach for the evaluation of substituent constants was developed.


Author(s):  
Sonia Ilieva ◽  
Boris Galabov

Numerous applications showed that the EPN index, an accurate quantum mechanical quantity, predicts with remarkable accuracy the energy shifts accompanying hydrogen bonding. The theoretically evaluated EPN descriptor correlates also excellently with experimental and theoretically evaluated kinetic parameters for a number of important organic reactions. Based on these findings an efficient computational approach for the evaluation of substituent constants was developed.


2010 ◽  
Vol 63 (12) ◽  
pp. 1598 ◽  
Author(s):  
Jane S. Murray ◽  
Kevin E. Riley ◽  
Peter Politzer ◽  
Timothy Clark

The prototypical directional weak interactions, hydrogen bonding and σ-hole bonding (including the special case of halogen bonding) are reviewed in a united picture that depends on the anisotropic nature of the molecular electrostatic potential around the donor atom. Qualitative descriptions of the effects that lead to these anisotropic distributions are given and examples of the importance of σ-hole bonding in crystal engineering and biological systems are discussed.


2021 ◽  
Vol 9 ◽  
Author(s):  
Priya Verma ◽  
Anubha Srivastava ◽  
Karnica Srivastava ◽  
Poonam Tandon ◽  
Manishkumar R. Shimpi

The pharmaceutical cocrystal of caffeine-citric acid (CAF-CA, Form II) has been studied to explore the presence of hydrogen bonding interactions and structure-reactivity-property relationship between the two constituents CAF and Citric acid. The cocrystal was prepared by slurry crystallization. Powder X-ray diffraction (PXRD) analysis was done to characterize CAF-CA cocrystal. Also, differential scanning calorimetry (DSC) confirmed the existence of CAF-CA cocrystal. The vibrational spectroscopic (FT-IR and FT-Raman) signatures and quantum chemical approach have been used as a strategy to get insights into structural and spectral features of CAF-CA cocrystal. There was a good correlation among the experimental and theoretical results of dimer of cocrystal, as this model is capable of covering all nearest possible interactions present in the crystal structure of cocrystal. The spectroscopic results confirmed that (O33-H34) mode forms an intramolecular (C25 = O28∙∙∙H34-O33), while (O26-H27) (O39-H40) and (O43-H44) groups form intermolecular hydrogen bonding (O26-H27∙∙∙N24-C22, O39-H40∙∙∙O52 = C51 and O43-H44∙∙∙O86 = C83) in cocrystal due to red shifting and increment in bond length. The quantum theory of atoms in molecules (QTAIM) analysis revealed (O88-H89∙∙∙O41) as strongest intermolecular hydrogen bonding interaction with interaction energy −12.4247 kcal mol−1 in CAF-CA cocrystal. The natural bond orbital analysis of the second-order theory of the Fock matrix highlighted the presence of strong interactions (N∙∙∙H and O∙∙∙H) in cocrystal. The HOMO-LUMO energy gap value shows that the CAF-CA cocrystal is more reactive, less stable and softer than CAF active pharmaceutical ingredients. The electrophilic and nucleophilic reactivities of atomic sites involved in intermolecular hydrogen bond interactions in cocrystal have been demonstrated by mapping electron density isosurfaces over electrostatic potential i.e. plotting molecular electrostatic potential (MESP) map. The molar refractivity value of cocrystal lies within the set range by Lipinski and hence it may be used as orally active form. The results show that the physicochemical properties of CAF-CA cocrystal are enhanced in comparison to CAF (API).


2015 ◽  
Vol 39 (2) ◽  
pp. 822-828 ◽  
Author(s):  
Christer B. Aakeröy ◽  
Tharanga K. Wijethunga ◽  
John Desper

A molecular electrostatic potential based approach for anticipating the outcome of hydrogen-bond interactions in a competitive scenario is described.


Sign in / Sign up

Export Citation Format

Share Document