Molecular electrostatic potential dependent selectivity of hydrogen bonding

2015 ◽  
Vol 39 (2) ◽  
pp. 822-828 ◽  
Author(s):  
Christer B. Aakeröy ◽  
Tharanga K. Wijethunga ◽  
John Desper

A molecular electrostatic potential based approach for anticipating the outcome of hydrogen-bond interactions in a competitive scenario is described.

2021 ◽  
Author(s):  
Thufail M. Ismail ◽  
Neetha Mohan ◽  
P. K. Sajith

Interaction energy (Eint) of hydrogen bonded complexes of nitroxide radicals can be assessed in terms of the deepest minimum of molecular electrostatic potential (Vmin).


2012 ◽  
Vol 68 (9) ◽  
pp. o335-o337 ◽  
Author(s):  
Saul H. Lapidus ◽  
Andreas Lemmerer ◽  
Joel Bernstein ◽  
Peter W. Stephens

A further example of using a covalent-bond-forming reaction to alter supramolecular assembly by modification of hydrogen-bonding possibilities is presented. This concept was introduced by Lemmerer, Bernstein & Kahlenberg [CrystEngComm(2011),13, 55–59]. The title structure, C9H11N3O·C7H6O4, which consists of a reacted niazid molecule,viz.N′-(propan-2-ylidene)nicotinohydrazide, and 2,4-dihydroxybenzoic acid, was solved from powder diffraction data using simulated annealing. The results further demonstrate the relevance and utility of powder diffraction as an analytical tool in the study of cocrystals and their hydrogen-bond interactions.


2016 ◽  
Vol 18 (27) ◽  
pp. 18145-18160 ◽  
Author(s):  
Claire R. Ashworth ◽  
Richard P. Matthews ◽  
Tom Welton ◽  
Patricia A. Hunt

Computational analysis indicates flexibility and diversity in the hydrogen bonding, but limited charge delocalisation, within the choline chloride–urea eutectic.


2019 ◽  
Vol 48 (43) ◽  
pp. 16222-16232 ◽  
Author(s):  
Ivan Kodrin ◽  
Mladen Borovina ◽  
Luka Šmital ◽  
Jesús Valdés-Martínez ◽  
Christer B. Aakeröy ◽  
...  

Molecular electrostatic potential values (MEP) at competing hydrogen-bond acceptor sites provided guidelines for predicting supramolecular connectivity in a set of Cu(ii) acac-based complexes.


2010 ◽  
Vol 63 (12) ◽  
pp. 1598 ◽  
Author(s):  
Jane S. Murray ◽  
Kevin E. Riley ◽  
Peter Politzer ◽  
Timothy Clark

The prototypical directional weak interactions, hydrogen bonding and σ-hole bonding (including the special case of halogen bonding) are reviewed in a united picture that depends on the anisotropic nature of the molecular electrostatic potential around the donor atom. Qualitative descriptions of the effects that lead to these anisotropic distributions are given and examples of the importance of σ-hole bonding in crystal engineering and biological systems are discussed.


2020 ◽  
Vol 33 (1) ◽  
pp. 171-178
Author(s):  
N.F.M. Azmi ◽  
R. Ali ◽  
A.A. Azmi ◽  
M.Z.H. Rozaini ◽  
K.H.K. Bulat ◽  
...  

The binding, interaction and distortion energies between the main triglycerides, palmitic-oleic-stearic (POS) in cocoa butter versus palmitic-oleic-palmitic (POP) in refined, bleached and deodorized (RBD) palm oil with cocoa′s methylxanthines (caffeine, theobromine, and theophylline) during the production of chocolate were theoretically studied and reported. The quantum mechanical software package of Gaussian09 at the theoretical level of density functional theory B3LYP/6-31G(d,p) was employed for all calculations, optimization, and basis set superposition errors (BSSE). Geometry optimizations were carried out to the minimum potential energy of individual species and binary complexes formed between the triglycerides, methylxanthines and polyphenols. The interaction energies for the optimized complexes were then corrected for the BSSE using the counterpoise method of Boys and Bernardi. The results revealed that the binding energy and interaction energy between methylxanthine components in cocoa powder with triglycerides were almost of the same magnitude (13.6-14.5 and 3.4-3.7 kJ/mol, respectively), except for the binary complex of POS-caffeine (25.1 and 10.7 kJ/mol, respectively). Based on the molecular geometry results, the hydrogen bond length and angle correlated well with the interaction energies. Meanwhile, the POS-caffeine complex with two higher and almost linear bond angles showed higher binding and interaction energies as compared to the other methylxanthines. Therefore, a donor-acceptor analysis showed that the hydrogen bond strength was proven using the molecular electrostatic potential (MEP), which resulted in parallel outcomes. The research results were believed to be one of the factors that contributed to the rheological behaviour and sensory perception of cocoa products, especially chocolate.


2019 ◽  
Vol 43 (40) ◽  
pp. 15956-15967 ◽  
Author(s):  
Priya Verma ◽  
Anubha Srivastava ◽  
Anuradha Shukla ◽  
Poonam Tandon ◽  
Manishkumar R. Shimpi

The hydrogen bond interactions in the cocrystal lead to spatial arrangements enhancing the physicochemical properties.


Sign in / Sign up

Export Citation Format

Share Document