scholarly journals The effect of electrodes on the voltage generation of microbial fuel cell

2021 ◽  
Vol 10 (1) ◽  
pp. 8-11
Author(s):  
N.E. Adesiji ◽  
M. Adeoye ◽  
A.O. Omojokun ◽  
J.A. Fatile

Microbial fuel cell (MFC) is a device that coverts the chemical energy contents of organic matter to electrical energy by the catalytic action of microorganisms. Cow dungs as organic substrates were used in three sets of dual chambered MFCs to study the effects ofelectrodes on the open circuit voltage (OCV) generation of MFC. The anode and cathode compartments were connected using a protonexchange membrane, 1 kg of the cow dung diluted with 500 ml of water was introduced in the anode compartment of each of the setups. The electrode configurations for set-up 1, 2 and 3 respectively were Carbon-Carbon(C-C), carbon-copper(C-Cu) and carbon- zinc(C-Zn). Samples  for microbial load count were collected every two days from the anode compartment of the MFC and analyzed using standard microbiological methods. The OCV of the three setups were measured daily for two weeks using a digital multimeter. The microbial load ranged from 4.2 × 104 to 8.5 × 104 CFU/ml for bacteria and 2.1 × 102 to 2.3 × 103 CFU/ml for fungi. The range (average) of the OCV obtained from the set-ups were 0.06 to 0.72 V (0.42 V) for the C–C; 0.02 to 0.67 V (0.26 V) for C-Cu and 0.11 to 0.78 V (0.39 V) for the C-Zn. The OCV for the C-C electrode combination showed an increasing trend while the OCV of C-Cu and C-Zn showed decreasing trends with increasing number of days. The C-C electrode combination gave the best OCV. Keywords: microbial fuel cell, open circuit voltage, electrodes, organic substrate

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Fatin Syahirah Fadzli ◽  
Showkat Ahmad Bhawani ◽  
Rania Edrees Adam Mohammad

A new bioelectrochemical approach based on metabolic activities inoculated bacteria, and the microbial fuel cell (MFC) acts as biocatalysts for the natural conversion to energy of organic substrates. Among several factors, the organic substrate is the most critical challenge in MFC, which requires long-term stability. The utilization of unstable organic substrate directly affects the MFC performance, such as low energy generation. Similarly, the interaction and effect of the electrode with organic substrate are well discussed. The electrode-bacterial interaction is also another aspect after organic substrate in order to ensure the MFC performance. The conclusion is based on this literature view; the electrode content is also a significant challenge for MFCs with organic substrates in realistic applications. The current review discusses several commercial aspects of MFCs and their potential prospects. A durable organic substrate with an efficient electron transfer medium (anode electrode) is the modern necessity for this approach.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Chin-Tsan Wang ◽  
Yan-Ming Chen ◽  
Zhao-Qin Qi ◽  
Yung-Chin Yang

The improvement of electrode materials used in microbial fuel cell (MFC) technology for enhancing the power performance of MFCs has attracted more and more attention lately. In this study, an new electrode material with a carbon nanotube planted on an Ni-based alloy substrate is applied to the MFC. Results show that a well-synthesized, straight CNT electrode performs the best, with a high open circuit voltage of 0.82 V and a maximum power density of 2.31 W/m2. It is believed that this new kind of electrode will have a promising future in the technology of power generation from MFCs.


2016 ◽  
Vol 54 ◽  
pp. 100-107 ◽  
Author(s):  
Emmanuel Egbadon ◽  
Campbell O. Akujobi ◽  
Chris O. Nweke ◽  
Wesley Braide ◽  
Cynthia K. Akaluka ◽  
...  

This study aimed at the simultaneous treatment of wastewater obtained from swine and generation of bioenergy in form of electricity from the energy stored in the organic component of the wastewater. The Open circuit voltage, current, power density and microbiological and physicochemical parameters were monitored. An initial Open circuit voltage of 516mV, Current of 0.29mA, and Power density of 32.74mW/m2were recorded, which increased to give maximum Open Circuit Voltages of 836mV, Current of 0.49mA, and Power density of 88.45mW/m2. The results revealed that The Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), Organic carbon, Total Soluble solids (TSS), Ammonia, Ammonium and Ammonium-Nitrogen all showed percentage decrease of 85.92%, 51.74%, 78.16%, 98.87%, 55.87%, 55.79% and 55.90% respectively while parameters such as Total Dissolved Solids (TDS), Nitrate, Nitrate-Nitrogen, Phosphates, Phosphorus and Orthophosphates however increased after treatment to give a percentage increase of -273.60%, -131.65%, -134.85%, -168.77%, -159.26%, and -157.03% respectively. Bacteria isolates identified at the biofilms on the anode wereCorynebacteriumspecie, Bacillusspecie, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosaandStreptococcus faecalis. The results from this study further exacerbate the Bioelectricity production as well as wastewater treatment potentials of the Microbial Fuel Cell technology.


RSC Advances ◽  
2017 ◽  
Vol 7 (21) ◽  
pp. 12503-12510 ◽  
Author(s):  
Xiufen Li ◽  
Yan Zheng ◽  
Pengfei Nie ◽  
Yueping Ren ◽  
Xinhua Wang ◽  
...  

In recent years, microbial fuel cell (MFC) technology has become an attractive option for metal recovery/removal at the cathode combined with electricity generation, using organic substrates as electron donor at the anode.


2018 ◽  
Vol 57 (4S) ◽  
pp. 04FM04 ◽  
Author(s):  
Shigeki Arata ◽  
Kenya Hayashi ◽  
Yuya Nishio ◽  
Atsuki Kobayashi ◽  
Kazuo Nakazato ◽  
...  

2013 ◽  
Vol 566 ◽  
pp. 137-140 ◽  
Author(s):  
Hiroki Ichiboshi ◽  
Kenichi Myoujin ◽  
Takayuki Kodera ◽  
Takashi Ogihara

Ce0.8Sm0.2O1.9 (Samaria-doped ceria: SDC) precursors were synthesized by carbon-assisted spray pyrolysis. SDC thin films were prepared by electrophoretic deposition using the SDC precursor particles. The as-prepared SDC thin films were sintered at 1600 °C for 10 h. Uniform films with a thickness of approximately 20 μm were obtained. A fuel cell using the prepared thin films showed a maximum power density of 60.6 mW/cm2 and an open circuit voltage (OCV) of 0.63 V at 700 °C.


2017 ◽  
Vol 76 (1) ◽  
pp. 28-34 ◽  
Author(s):  
Lei Xu ◽  
Yaqian Zhao ◽  
Tongyue Wang ◽  
Ranbin Liu ◽  
Fei Gao

To improve the sustainability of constructed wetlands (CWs), a novel tiered wetland system integrated with a microbial fuel cell (MFC) was developed in this study. Compared to the single stage CW, chemical oxygen demand (COD) removal efficiency was improved from 83.2% to 88.7%. More significantly, this tiered system significantly enhanced total nitrogen removal efficiency (an increase from 53.1% to 75.4%). In terms of MFC integration, a gradually decreased performance in electricity production was observed during its 3 months of operation (the voltage dropped from nearly 600 mV to less than 300 mV), which resulted in a reduction of power density from around 2 W/m3 to less than 0.5 W/m3. The deterioration in performance of the air-cathode is the main reason behind this, since the electrode potential of the cathode under open circuit reduced from 348.5 mV to 49.5 mV while the anode potential kept constant at around −400 mV. However, in spite of its electrical performance reduction, it was proved that MFC integration enhanced COD removal and the nitrification process. Further work is needed to improve the stability and feasibility of this new system.


2016 ◽  
Vol 56 (1S) ◽  
pp. 01AH04 ◽  
Author(s):  
Kiichi Niitsu ◽  
Takashi Ando ◽  
Atsuki Kobayashi ◽  
Kazuo Nakazato

Sign in / Sign up

Export Citation Format

Share Document