Preparation of Ce0.8Sm0.2O1.9 Thin Films by Electrophoretic Deposition and their Fuel Cell Performance

2013 ◽  
Vol 566 ◽  
pp. 137-140 ◽  
Author(s):  
Hiroki Ichiboshi ◽  
Kenichi Myoujin ◽  
Takayuki Kodera ◽  
Takashi Ogihara

Ce0.8Sm0.2O1.9 (Samaria-doped ceria: SDC) precursors were synthesized by carbon-assisted spray pyrolysis. SDC thin films were prepared by electrophoretic deposition using the SDC precursor particles. The as-prepared SDC thin films were sintered at 1600 °C for 10 h. Uniform films with a thickness of approximately 20 μm were obtained. A fuel cell using the prepared thin films showed a maximum power density of 60.6 mW/cm2 and an open circuit voltage (OCV) of 0.63 V at 700 °C.

2005 ◽  
Vol 277-279 ◽  
pp. 455-461 ◽  
Author(s):  
Nguyen Xuan Phuong Vo ◽  
Sung Pil Yoon ◽  
Suk Woo Nam ◽  
Jong Hee Han ◽  
Tae Hoon Lim ◽  
...  

An anode-supported type solid oxide fuel cell (SOFC) is a promising structure resulting in a very high performance because it consists of a very thin electrolyte. In the preliminary stage, we have succeeded in the fabrication of Samaria-Doped Ceria (SDC) thin film on a porous Ni-Al substrate using a sol-gel coating technique. The thin electrolyte film binds the substrate well and a single cell made with the SDC thin-film electrolyte and porous LSM cathode exhibited a good performance in a mixed-gas condition, even at intermediate temperatures. The single cell, consisting of 20 µm thin SDC electrolytes, the porous Ni-Al anode substrate, and a LSM cathode, exhibited an open circuit voltage of 0.82V and a maximum power density of 0.31 W.cm-2 at 700°C with humidified methane and air mixtures. This cell also generated an open circuit voltage of about 1.1V and a maximum power density of 0.34 W.cm-2 at 600°C with humidified hydrogen as the fuel and air as the oxidant.


2012 ◽  
Vol 724 ◽  
pp. 389-392 ◽  
Author(s):  
Yuta Ibusuki ◽  
Yoshihiro Hirata ◽  
Soichiro Sameshima ◽  
Naoki Matsunaga

Cell performance was measured for four types of Ni (40 vol%)-Gd-doped ceria (GDC) anode-supported solid oxide fuel cells with GDC electrolyte (40-120 μm thickness) of Ce1-xGdxO2-x/2 compositions (x = 0.05, 0.1, 0.15 and 0.2) at 773-1073 K using a H2 fuel. (La0.8Sr0.2)(Co0.8Fe0.2)O3 cathode was printed on the GDC films. The open circuit voltage and maximum power density at 873-1073 K showed a maximum at x = 0.1. The maximum power density at x = 0.1 was 166 and 506 mW/cm2 at 873 and 1073 K, respectively. The excess oxygen vacancy at x = 0.1-0.2, which does not contribute to the oxide ion conductivity, reacts with a H2 fuel to form electrons (H2 + VO 2H+ + VO×, VO× VO + 2e-). This reaction reduces the cell performance.


Author(s):  
Pinchas Schechner ◽  
Eugenia Bubis ◽  
Hana Faiger ◽  
Eyal Zussman ◽  
Ehud Kroll

This work adds more experimental evidence regarding the feasibility of using glucose to fuel fuel-cells with anodes that have a high area-to-volume ratio. Electrospinning was used to fabricate sub-micrometer size fibrous electrocatalytic anode membranes for the oxidation of glucose in an alkaline fuel cell (AFC). The fibers of the membranes were made of polyacrylonitrile (PAN) and coated with silver by electroless plating. The anodes were tested while installed in a membranless fuel cell. The results presented include the open circuit voltage, OCV, the polarization curve, the power density as a function of the current density, and the peak power density, PPD. The measurements were performed with constant concentrations of glucose, 0.8 M, and KOH electrolyte solution, 1M. The performance of the anodes was found to improve as the diameter of the silver-plated fibers decreased. The highest PPD of 0.28 mW/cm2 was obtained with an anode made of plated fibers having a mean fiber diameter of 130 nanometers. We conclude from the results that saccharides in general, and glucose in particular, can serve as fuels for fuel cells, and that silver-plated polymeric electrospun electrodes have advantages due to their large surface area.


2007 ◽  
Vol 544-545 ◽  
pp. 997-1000 ◽  
Author(s):  
Minako Nagamori ◽  
Yoshihiro Hirata ◽  
Soichiro Sameshima

Terminal voltage, electric power density and overpotential were measured for the solid oxide fuel cell with gadolinium-doped ceria electrolyte (Ce0.8Gd0.2O1.9, GDC), 30 vol% Ni-GDC anode and Pt cathode using a H2 fuel or biogas (CH4 47, CO2 31, H2 19 vol %) at 1073 K. Addition of 1 ppm H2S in the 3vol % H2O-containing H2 fuel gave no change in the open circuit voltage (0.79 - 0.80 V) and the maximum power density (65 - 72 mW/cm2). Furthermore, no reaction between H2S and Ni in the anode was suggested by the thermodynamic calculation. On the other hand, the terminal voltage and electric power density decreased when 1 ppm H2S gas was mixed with the biogas. After the biogas with 1 ppm H2S flowed into the anode for 8 h, the electric power density decreased from 125 to 90 mW/cm2. The reduced electric power density was also recovered by passing 3 vol % H2O-containing H2 fuel for 2 h.


Author(s):  
Sudharsan Bharath

The low-temperature Direct Propane Polymer Electrolyte Membrane Fuel Cell (DPFC) based on low-cost modified membranes was demonstrated for the first time. The propane is fed into the fuel cell directly without the need for reforming. A PBI membrane doped with acid and a Nafion 117 membrane modified or non-modified with silicotungstic acid were used as the polymer membranes. The anode was based on Pt, Pt-Ru or Pt/CrO3 electro catalysts and the cathode was based on a Pt electro catalyst. For non-optimized fuel cells based on H2SO4 doped PBI membranes and Pt/CrO3 anode, the open circuit potential was 1.0 Volt and the current density at 0.40 Volt was 118 mA.cm-2 at 95°C. For fuel cells based on Nafion 117 membranes modified with silicotungstic acid and on Pt/CrO3, the open-circuit voltage was 0.98 Volt and the current density at 0.40 Volt was 108 mA.cm-2 while fuel cells based on non-modified Nafion 117 membranes exhibited an open-circuit voltage of 0.8 Volt and the current density at 0.40 Volt was 42 mA.cm-2. It was also shown that propane fuel cells using anodes based on Pt-Ru/C anode (42 mW.cm-2) exhibit a similar maximum power density to that exhibited by fuel cells based on Pt-CrO3/C-anode (46 mW.cm-2), while DPFC using a Pt/C-based anode exhibited lower maximum power density (18 mW.cm-2) than fuel cells based on the Pt-CrO3/C anode (46 mW.cm-2).


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Chin-Tsan Wang ◽  
Yan-Ming Chen ◽  
Zhao-Qin Qi ◽  
Yung-Chin Yang

The improvement of electrode materials used in microbial fuel cell (MFC) technology for enhancing the power performance of MFCs has attracted more and more attention lately. In this study, an new electrode material with a carbon nanotube planted on an Ni-based alloy substrate is applied to the MFC. Results show that a well-synthesized, straight CNT electrode performs the best, with a high open circuit voltage of 0.82 V and a maximum power density of 2.31 W/m2. It is believed that this new kind of electrode will have a promising future in the technology of power generation from MFCs.


RSC Advances ◽  
2014 ◽  
Vol 4 (38) ◽  
pp. 19925-19931 ◽  
Author(s):  
Yu-Chieh Tu ◽  
Chun-Yu Chang ◽  
Ming-Chung Wu ◽  
Jing-Jong Shyue ◽  
Wei-Fang Su

Highly crystalline perovskite BiFeO3 is obtained by a facile solution method. We have reported that the YSZ/BFO electrolyte with 17 μm/30 μm thickness, respectively, showed a maximum power density of 165 mW cm−2 and open-circuit voltage of 0.75 V at 650 °C.


Author(s):  
P. Leone ◽  
A. Lanzini ◽  
B. Delhomme ◽  
G. A. Ortigoza-Villalba ◽  
M. Santarelli ◽  
...  

This paper describes an experimental analysis of a planar solid oxide fuel cell (SOFC) single unit cell with Crofer22APU plate assembly. The work reports the electrical behavior of such a system by outlining the time-evolution of contact resistances between the air electrode and the stainless steel plate. Moreover, the stability and effectiveness of a glass-ceramic sealant used to join Crofer22APU interconnector to an anode supported cell is also discussed. The time-evolution of the open circuit voltage was investigated with respect to the eventual sealant degradation or chromium poisoning issues by the metallic interconnector; a rapid voltage degradation at open circuit voltage was measured after 150 h. Chromium poisoning was found to degrade the fuel cell performance, whereas the sealant was chemically and physically stable, as shown by a post-mortem analysis on the cell components.


2007 ◽  
Vol 280-283 ◽  
pp. 435-438 ◽  
Author(s):  
Wei Tao Bao ◽  
Yin Zhu Jiang ◽  
Guang Yan Zhu ◽  
Jian Feng Gao ◽  
Guang Yao Meng

Dense YSZ thin film with a thickness from 2 to 15 µm on porous Ni-YSZ anode support was fabricated by a novel powder coating process. The performance of the cell with a composite of Sm0.8Sr0.2CoO3- YSZ (40 wt.%) as cathode was examined over a temperature range from 550 to 800 °C, using H2 -3% H2O as fuel and air as oxidant. The maximum power density of the cells was over 300 mW/cm2 at 800 °C. The open circuit voltage of the cells reached 1.1 V at 750 °C, illustrating the full dense of the YSZ electrolyte. The anode-electrolyte interfacial resistances were negligible in comparison with that of cathode-electrolyte, indicating the good coherency of the YSZ electrolyte to the anode support. These results demonstrate the reliability of this novel process for thin electrolyte SOFCs.


2016 ◽  
Vol 54 ◽  
pp. 100-107 ◽  
Author(s):  
Emmanuel Egbadon ◽  
Campbell O. Akujobi ◽  
Chris O. Nweke ◽  
Wesley Braide ◽  
Cynthia K. Akaluka ◽  
...  

This study aimed at the simultaneous treatment of wastewater obtained from swine and generation of bioenergy in form of electricity from the energy stored in the organic component of the wastewater. The Open circuit voltage, current, power density and microbiological and physicochemical parameters were monitored. An initial Open circuit voltage of 516mV, Current of 0.29mA, and Power density of 32.74mW/m2were recorded, which increased to give maximum Open Circuit Voltages of 836mV, Current of 0.49mA, and Power density of 88.45mW/m2. The results revealed that The Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), Organic carbon, Total Soluble solids (TSS), Ammonia, Ammonium and Ammonium-Nitrogen all showed percentage decrease of 85.92%, 51.74%, 78.16%, 98.87%, 55.87%, 55.79% and 55.90% respectively while parameters such as Total Dissolved Solids (TDS), Nitrate, Nitrate-Nitrogen, Phosphates, Phosphorus and Orthophosphates however increased after treatment to give a percentage increase of -273.60%, -131.65%, -134.85%, -168.77%, -159.26%, and -157.03% respectively. Bacteria isolates identified at the biofilms on the anode wereCorynebacteriumspecie, Bacillusspecie, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosaandStreptococcus faecalis. The results from this study further exacerbate the Bioelectricity production as well as wastewater treatment potentials of the Microbial Fuel Cell technology.


Sign in / Sign up

Export Citation Format

Share Document