scholarly journals Hydrological system analysis and groundwater recharge estimation using semi-distributed models and river discharge in the Meki River Basin

2008 ◽  
Vol 31 (1) ◽  
Author(s):  
T Ayenew
Geosciences ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 289
Author(s):  
Nur Hayati Hussin ◽  
Ismail Yusoff ◽  
May Raksmey

Groundwater has supported 70% of the water supply at the Lower Kelantan River Basin (LKRB) since the 1930s and demand for groundwater increases annually. Groundwater has been abstracted from shallow and deep aquifers. However, a comprehensive study on groundwater recharge estimation has never been reported. This study evaluated various methods to quantify recharge rate using chloride mass balance (CMB), water table fluctuation (WTF), temperature–depth profiles (TDP), and groundwater modelling coupled with water balance (GM(WB)). Recharge estimation using CMB, WTF, TDP, and GM(WB) showed high variability within 8% to 68% of annual rainfall. CMB is range from 16% to 68%, WTF 11% to 19%, TDP 8% to 11%, and GM(WB) 7% to 12% of annual rainfall, respectively. At 11%, recharge from GM(WB) was the best method for estimation because the model was constructed and calibrated using locally derived input parameters. GM(WB) is the only method involved with calibration and validation process to reduce the uncertainty. The WTF method based on long-term hydrological records gives a reasonable recharge value, in good agreement with GM(WB) and these methods can be paired to ensure the reliability of recharge value approximation in the same ranges. Applying various methods has given insight into methods selection to quantify recharge at LKRB and it is recommended that a lysimeter is installed as a direct method to estimate recharge.


2017 ◽  
Vol 62 (7) ◽  
pp. 1094-1113 ◽  
Author(s):  
Hèou Maléki Badjana ◽  
Manfred Fink ◽  
Jörg Helmschrot ◽  
Bernd Diekkrüger ◽  
Sven Kralisch ◽  
...  

2017 ◽  
Vol 31 (19) ◽  
pp. 3437-3451 ◽  
Author(s):  
Azizallah Izady ◽  
Osman A.E. Abdalla ◽  
Ata Joodavi ◽  
Akbar Karimi ◽  
Mingjie Chen ◽  
...  

2018 ◽  
Vol 8 (5) ◽  
Author(s):  
Mohd Khairul Nizar Shamsuddin ◽  
Wan Nor Azmin Sulaiman ◽  
Mohammad Firuz Ramli ◽  
Faradiella Mohd Kusin ◽  
Kamarudin Samuding

Author(s):  
Gizachew Kabite ◽  
Misgana Muleta ◽  
Berhan Gessesse

Land cover and climate changes greatly influence hydrologic responses of a basin. However, the response vary from basin to basin depending on the nature and severity of the changes and basin characteristics. Moreover, the combined impacts of the changes affect hydrologic responses of a basin in an offsetting or synergistic manner. This study quantified the separate and combined impacts, and the relative contributions of land cover and climate changes on multiple hydrological regimes (i.e., surface runoff, streamflow, groundwater recharge evapotranspiration) for the Dhidhessa Subbasin. Land cover and climate change data were obtained from a recent study completed for the basin. Calibrated Soil and Water Analysis Tool (SWAT) was used to quantify the impacts. The result showed that SWAT model performed well for the Dhidhessa Subbasin in predicting the water balance components. Substantial land cover change as well as an increasing temperature and rainfall trends were reported in the river basin during the past three decades. In response to these changes, surface runoff, streamflow and actual evapotranspiration (AET) increased while groundwater recharge declined. Surface runoff was more sensitive to land cover than to climate changes whereas streamflow and AET were more sensitive to climate change than to land cover change. The combined impacts played offsetting effect on groundwater recharge and AET while inconsistent effects within study periods for other hydrologic responses. Overall, the predicted hydrologic responses will have negative impacts on agricultural production and water resources availability. Therefore, the implementation of integrated watershed management strategies such as soil and water conservation and afforestation could reverse the negative impacts.


2018 ◽  
Vol 13 (1) ◽  
pp. 32-43 ◽  
Author(s):  
Umesh Kumar Singh ◽  
Balwant Kumar

Anthropogenic greenhouse gas emission is altering the global hydrological cycle due to change in rainfall pattern and rising temperature which is responsible for alteration in the physical characteristics of river basin, melting of ice, drought, flood, extreme weather events and alteration in groundwater recharge. In India, water demand for domestic, industrial and agriculture purposes have already increased many folds which are also influencing the water resource system. In addition, climate change has induced the surface temperature of the Indian subcontinent by 0.48 ºC in just last century. However, Ganges–Brahmaputra–Meghna (GBM) river basins have great importance for their exceptional hydro-geological settings and deltaic floodplain wetland ecosystems which support 700 million people in Asia. The climatic variability like alterations in precipitation and temperature over GBM river basins has been observed which signifies the GBM as one of the most vulnerable areas in the world under the potential impact of climate change. Consequently, alteration in river discharge, higher runoff generation, low groundwater recharge and melting of glaciers over GBM river basin could be observed in near future. The consequence of these changes due to climate change over GBM basin may create serious water problem for Indian sub-continents. This paper reviews the literature on the historical climate variations and how climate change affects the hydrological characteristics of different river basins.


Sign in / Sign up

Export Citation Format

Share Document