scholarly journals Comparison of Applications to Evaluate Groundwater Recharge at Lower Kelantan River Basin, Malaysia

Geosciences ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 289
Author(s):  
Nur Hayati Hussin ◽  
Ismail Yusoff ◽  
May Raksmey

Groundwater has supported 70% of the water supply at the Lower Kelantan River Basin (LKRB) since the 1930s and demand for groundwater increases annually. Groundwater has been abstracted from shallow and deep aquifers. However, a comprehensive study on groundwater recharge estimation has never been reported. This study evaluated various methods to quantify recharge rate using chloride mass balance (CMB), water table fluctuation (WTF), temperature–depth profiles (TDP), and groundwater modelling coupled with water balance (GM(WB)). Recharge estimation using CMB, WTF, TDP, and GM(WB) showed high variability within 8% to 68% of annual rainfall. CMB is range from 16% to 68%, WTF 11% to 19%, TDP 8% to 11%, and GM(WB) 7% to 12% of annual rainfall, respectively. At 11%, recharge from GM(WB) was the best method for estimation because the model was constructed and calibrated using locally derived input parameters. GM(WB) is the only method involved with calibration and validation process to reduce the uncertainty. The WTF method based on long-term hydrological records gives a reasonable recharge value, in good agreement with GM(WB) and these methods can be paired to ensure the reliability of recharge value approximation in the same ranges. Applying various methods has given insight into methods selection to quantify recharge at LKRB and it is recommended that a lysimeter is installed as a direct method to estimate recharge.

2020 ◽  
Vol 12 (4) ◽  
pp. 709 ◽  
Author(s):  
Abhishek Banerjee ◽  
Ruishan Chen ◽  
Michael E. Meadows ◽  
R.B. Singh ◽  
Suraj Mal ◽  
...  

This paper analyses the spatio-temporal trends and variability in annual, seasonal, and monthly rainfall with corresponding rainy days in Bhilangana river basin, Uttarakhand Himalaya, based on stations and two gridded products. Station-based monthly rainfall and rainy days data were obtained from the India Meteorological Department (IMD) for the period from 1983 to 2008 and applied, along with two daily rainfall gridded products to establish temporal changes and spatial associations in the study area. Due to the lack of more recent ground station rainfall measurements for the basin, gridded data were then used to establish monthly rainfall spatio-temporal trends for the period 2009 to 2018. The study shows all surface observatories in the catchment experienced an annual decreasing trend in rainfall over the 1983 to 2008 period, averaging 15.75 mm per decade. Analysis of at the monthly and seasonal trend showed reduced rainfall for August and during monsoon season as a whole (10.13 and 11.38 mm per decade, respectively); maximum changes were observed in both monsoon and winter months. Gridded rainfall data were obtained from the Climate Hazard Infrared Group Precipitation Station (CHIRPS) and Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR). By combining the big data analytical potential of Google Earth Engine (GEE), we compare spatial patterns and temporal trends in observational and modelled precipitation and demonstrate that remote sensing products can reliably be used in inaccessible areas where observational data are scarce and/or temporally incomplete. CHIRPS reanalysis data indicate that there are in fact three significantly distinct annual rainfall periods in the basin, viz. phase 1: 1983 to 1997 (relatively high annual rainfall); phase 2: 1998 to 2008 (drought); phase 3: 2009 to 2018 (return to relatively high annual rainfall again). By comparison, PERSIANN-CDR data show reduced annual and winter precipitation, but no significant changes during the monsoon and pre-monsoon seasons from 1983 to 2008. The major conclusions of this study are that rainfall modelled using CHIRPS corresponds well with the observational record in confirming the decreased annual and seasonal rainfall, averaging 10.9 and 7.9 mm per decade respectively between 1983 and 2008, although there is a trend (albeit not statistically significant) to higher rainfall after the marked dry period between 1998 and 2008. Long-term variability in rainfall in the Bhilangana river basin has had critical impacts on the environment arising from water scarcity in this mountainous region.


2021 ◽  
Vol 1 (1) ◽  
pp. 25-38
Author(s):  
Gumilar Utamas Nugraha ◽  
◽  
Rachmat Fajar Lubis ◽  
Hendra Bakti ◽  
Priyo Hartanto

The Jakarta Groundwater Basin is one of the groundwater basins with the highest development, economic, and business activities in Indonesia. Groundwater damage has become a major growing issue in the Jakarta groundwater basin. Intensive development has led to the overuse of groundwater in this basin. Efforts are needed to manage, protect, and conserve groundwater in this basin to support the development and economic activities sustainably. Jakarta, as the capital city of Indonesia, is located in the groundwater basin. Groundwater sustainability is determined by the amount of groundwater recharge in those basins, so knowledge of groundwater recharge is important. Groundwater is an important part of a hydrological cycle, and groundwater recharge ensures groundwater sustainability in some areas. This study aims to estimate groundwater recharge in the Jakarta groundwater basin using the water budget and water table fluctuation method. The water budget method used is Thornthwaite, Dingman, and Edijatno-Michel. The Water Table Fluctuation methods used are Dellin and Delottier. Analysis of the amount of groundwater recharge estimation is carried out using the ESPERE Version 2 software. Output data is then further analyzed using descriptive and inferential statistical approaches to determine whether there is a difference in groundwater recharge amount based on the water budget and water table fluctuation. The results show that groundwater recharge based on water budget methods is 209–885 mm/year. The estimation of the largest amount of recharge was obtained using the Edijatno-Michel approach. The smallest amount of recharge was estimated using the Dingman-Hamon method. The average recharge of groundwater in Tanjung Priok is 305 mm/year, Kemayoran is 209 mm/year, and Bogor is 885 mm/year. Only 8–15 % of the annual rainfall that converted into groundwater recharge at the study area. Based on the analysis using the water table fluctuation method, groundwater recharge in this basin has a value of 240 mm/year. The variation of the amount of groundwater recharge is caused by the pros and cons of each method. Apart from that, geological factors, land use/land cover factors, and climatic variations in this basin can affect the research results. By considering the amount of groundwater recharge, groundwater management in the Jakarta groundwater basin needs to be carried out for harmonious development and groundwater conservation.


2021 ◽  
pp. 54-62
Author(s):  
Nguyen Huu Xuan ◽  
◽  
Nguyen Khanh Van ◽  
Hoang Thi Kieu Oanh ◽  
Vuong Van Vu ◽  
...  

Bioclimate and natural vegetation have a long - term relationship that identify the potential vegetation distribution at different areas. For that reason, bioclimatic classification system was applied to the territory of Ba and Kone river basin, Vietnam. The precipitation and temperature dataset of Ba and Kone river basin was collected from 17 climate, hydrology, rain gauge stations which allowed to create a bioclimatic map at a scale of 1:250.000. Three bioclimatic factors of thermal-moisture basic conditions such as annual temperature (TN), annual rainfall (RN), length of dry season (n) are selected as criteria system of Ba and Kone river basin’s bioclimate. In order to describe the relationships between bioclimatic variables and zonal vegetation units, the resulting map presented 12 bioclimatic units corresponding distribution of vegetation from low to high altitudes. By building bioclimatology map in Ba and Kone river basin, the government can develop sustainable agro forestry in Central Highlands and South Central Coast of Vietnam.


2012 ◽  
Vol 16 (12) ◽  
pp. 4557-4570 ◽  
Author(s):  
O. V. Barron ◽  
R. S. Crosbie ◽  
W. R. Dawes ◽  
S. P. Charles ◽  
T. Pickett ◽  
...  

Abstract. Reviews of field studies of groundwater recharge have attempted to investigate how climate characteristics control recharge, but due to a lack of data have not been able to draw any strong conclusions beyond that rainfall is the major determinant. This study has used numerical modelling for a range of Köppen-Geiger climate types (tropical, arid and temperate) to investigate the effect of climate variables on recharge for different soil and vegetation types. For the majority of climate types, the correlation between the modelled recharge and total annual rainfall is weaker than the correlation between recharge and the annual rainfall parameters reflecting rainfall intensity. Under similar soil and vegetation conditions for the same annual rainfall, annual recharge in regions with winter-dominated rainfall is greater than in regions with summer-dominated rainfall. The importance of climate parameters other than rainfall in recharge estimation is highest in the tropical climate type. Mean annual values of solar radiation and vapour pressure deficit show a greater importance in recharge estimation than mean annual values of the daily mean temperature. Climate parameters have the lowest relative importance in recharge estimation in the arid climate type (with cold winters) and the temperate climate type. For 75% of all soil, vegetation and climate types investigated, recharge elasticity varies between 2 and 4 indicating a 20% to 40% change in recharge for a 10% change in annual rainfall. Understanding how climate controls recharge under the observed historical climate allows more informed choices of analogue sites if they are to be used for climate change impact assessments.


2016 ◽  
Vol 14 (2) ◽  
pp. 151-163 ◽  
Author(s):  
Faizah Che Ros ◽  
Hiroyuki Tosaka ◽  
Lariyah Mohd Sidek ◽  
Hidayah Basri

2020 ◽  
Vol 3 (1) ◽  
pp. 21
Author(s):  
Morris W. Mathenge ◽  
Dr. Gladys M. Gathuru ◽  
Dr. Esther L. Kitur

Purpose: Groundwater recharge is an important process for sustainable groundwater development and its quantification is a prerequisite for efficient management of groundwater resources. The purpose of this study was to evaluate the scale and spatial-temporal variation of groundwater recharge from precipitation in the semi-arid Stony Athi sub-catchment. Methodology: A descriptive case study approach was used for the evaluation. WetSpass-M, a GIS physically based, spatially distributed watershed model was applied. The model integrates biophysical and climatic characteristics of a watershed to simulate the long term mean groundwater recharge. Grid maps of the sub-catchment characteristics were prepared from primary and secondary data using ArcMap. The model was applied for four periods, namely, 1984, 1995, 2005 and 2017. Besides the average groundwater recharge, other outputs of the model include surface run-off and actual evapotranspiration. The study was carried out between January and December 2018. Findings: Land cover in the Stony Athi sub-catchment is comprised of built-up area, agricultural land, grassland, shrub-land, mixed forest and bare land. Topography ranges from 1493 m to 2,082 m above sea level with a slope of between 0% and 30%. Soil types include sandy loam, loam, sandy clay loam, sandy loam and clay. The mean annual precipitation is about 634 mm while the potential evapotranspiration is about 1,490 mm. Annual temperature averages 19.0°C with a mean maximum of 25°C and a mean minimum of 12.7°C. The results of the simulation indicated that the long-term temporal and spatial average annual rainfall of 634 mm is distributed as 88 mm (14%) recharge, 77 mm (12%) surface runoff while 475 mm (75%) is lost through evapotranspiration.   Unique contribution to theory, practice and policy: This study demonstrate the importance of physically-based spatially-distributed hydrological models in estimating the water balance. The study provides a theoretical basis for scientific, rational resource allocation and utilization as well as creating awareness of the need to enhance groundwater governance. Results from this study can be used as an input for building an integrated groundwater modelling and for evaluation of potential sites for managed artificial recharge through harvesting runoff to improve groundwater storage.  


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1029 ◽  
Author(s):  
Chanchai Petpongpan ◽  
Chaiwat Ekkawatpanit ◽  
Duangrudee Kositgittiwong

Climate change is progressing and is now one of the most important global challenges for humanities. Water resources management is one of the key challenges to reduce disaster risk. In Northern Thailand, flood and drought have always occurred because of the climate change impact and non-systematic management in the conjunctive use of both sources of water. Therefore, this study aims to assess the climate change impact on surface water and groundwater of the Yom and Nan river basins, located in the upper part of Thailand. The surface water and groundwater regimes are generated by a fully coupled SWAT-MODFLOW model. The future climate scenarios are considered from the Representative Concentration Pathways (RCPs) 2.6 and 8.5, presented by the Coupled Model Intercomparison Project Phase 5 (CMIP5), in order to mainly focus on the minimum and maximum Green House Gas (GHG) emissions scenarios during the near future (2021–2045) periods. The results show that the average annual air temperature rises by approximately 0.5–0.6 °C and 0.9–1.0 °C under the minimum (RCP 2.6) and maximum (RCP 8.5) GHG emission scenarios, respectively. The annual rainfall, obtained from both scenarios, increased by the same range of 20–200 mm/year, on average. The summation of surface water (water yield) and groundwater recharge (water percolation) in the Yom river basin decreased by 443.98 and 316.77 million m3/year under the RCPs 2.6 and 8.5, respectively. While, in the Nan river basin, it is projected to increase by 355 million m3/year under RCP 2.6 but decrease by 20.79 million m3/year under RCP 8.5. These quantitative changes can directly impact water availability when evaluating the water demand for consumption, industry, and agriculture.


Sign in / Sign up

Export Citation Format

Share Document