Biogenic Amine Formation in Fresh Vacuum-Packaged Beef During Storage at 1°C for 120 Days1

1993 ◽  
Vol 56 (6) ◽  
pp. 497-500 ◽  
Author(s):  
J. SCOTT SMITH ◽  
P. BRETT KENNEY ◽  
CURTIS L. KASTNER ◽  
MICHAEL M. MOORE

Undesirable changes in vacuum-packaged beef products during prolonged storage can present a problem to some consumers. Bacterial proteolysis and decarboxylation can release pressor amines, such as tyramine and histamine, that can be toxic when ingested by individuals taking monoamine oxidase-inhibiting drugs. This study determined the effect of carcass decontamination on bacterial growth and biogenic amine production in vacuum-packaged subprimals. Beef carcasses were treated with 200 ppm chlorine or 3% lactic acid sprays, fabricated, vacuum packaged, and stored at 1°C. Samples were evaluated up to 120 d for amine concentrations, total aerobic counts, and lactic acid bacteria. Of all the amines monitored, only tyramine was consistently detected over the course of the study. Significant levels of tyramine were detected starting at day 20 of storage in all treatments and controls. By day 60, the levels had increased to about 50 μg/g and continued to increase to about 180 μg/g by 120 d of storage. Tryptamine was detected in some samples by 60 d of storage, but the levels were variable and did not follow any trend. Initial aerobic plate counts ranged from 10-200 CFU/cm2, whereas lactic acid bacteria counts were from 6-46 CFU/cm2. Bacterial numbers increased exponentially until about day 60, when they leveled off at between 106-107 CFU/cm2, with no differences between any of the treatments and/or controls. Although the vacuum-packaged beef was organoleptically acceptable up to day 60 (day 90 for some samples), it could pose some risk to individuals sensitive to biogenic amines if the product is stored at 1°C or higher for 60 d or more.

1995 ◽  
Vol 58 (3) ◽  
pp. 284-288 ◽  
Author(s):  
ANGELIA R. KRIZEK ◽  
J. SCOTT SMITH ◽  
RANDALL K. PHEBUS

When fresh, vacuum-packaged, meat products are stored for extended periods of time, undesirable changes, due to naturally occurring microbial flora present during packaging occur. Lactobacillus spp. are known to form amines through the decarboxylation of free amino acids. Tyramine and histamine can cause intoxication in individuals taking monoamine oxidase-inhibiting drugs. This study determined 1) the effect of storage temperature on bacterial growth and biogenic amine production in vacuum-packaged beef subprimals, 2) the effect of washing subprimals with water to remove tyramine contamination, and 3) the penetration of tyramine from the surface of the subprimal. Inside rounds were vacuum packaged and stored at −2°C or 2°C. Samples were evaluated over 100 days for amine concentrations, total psychrotrophic counts and lactic acid bacteria. Tyramine, putrescine and cadaverine were detected in this study. Significant levels (15 μg/g) of tyramine were detected at 20 days of storage at 2°C and 40 days of storage at −2°C. Putrescine and cadaverine were detected first at 40 days of storage at 2°C and 60 days of storage at −2°C. Both treatment groups contained about 130 μg/g of tyramine at 100 days of storage. Psychrotrophic plate counts and lactic acid bacteria counts were initially 103 colony forming units (CFU)/cm2 and ranged from 106–107 CFU/cm2 at 100 days of storage. Even though tyramine was evident at a depth of 6 mm from the surface of the cut, one-third of the amine was removed by washing the subprimal with tap water.


Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2980
Author(s):  
Tareq M. Osaili ◽  
Fayeza Hasan ◽  
Anas A. Al-Nabulsi ◽  
Dinesh Kumar Dhanasekaran ◽  
Reyad Shaker Obaid ◽  
...  

The use of essential oils (EOs) and/or vacuum packaging (VP) with meats could increase product shelf-life. However, no studies investigating the effect of EOs and VP on camel meat background microbiota have been conducted previously. The study aimed to analyze the antimicrobial effect of essential oils (EOs) carvacrol (CA), cinnamaldehyde (CI), and thymol (TH) at 1 or 2% plus vacuum packaging (VP) on the growth of spoilage-causing microorganisms in marinated camel meat chunks during storage at 4 and 10 °C. VP is an effective means to control spoilage in unmarinated camel meat (CM) and marinated camel meat (MCM) compared to aerobic packaging (AP). However, after EO addition to MCM, maximum decreases in spoilage-causing microorganisms were observed under AP on day 7. Increasing the temperature from 4 to 10 °C under AP increased the rate of spoilage-causing bacterial growth in CM and MCM; however, EOs were more effective at 10 °C. At 10 °C the maximum reductions in total mesophilic plate counts, yeast and molds, mesophilic lactic Acid bacteria, Enterobacteriaceae, and Pseudomonas spp. were 1.2, 1.4, 2.1, 3.1, and 4.8 log CFU/g, respectively. Incorporating EOs at 2% in MCM, held aerobically under temperature abuse conditions, delayed spoilage.


1982 ◽  
Vol 45 (1) ◽  
pp. 74-81 ◽  
Author(s):  
M. O. HANNA ◽  
G. C. SMITH ◽  
J. W. SAVELL ◽  
F. K. McKEITH ◽  
C. VANDERZANT

Aerobic plate counts (APC) of vacuum-packaged beef livers, beef kidneys and pork livers during refrigerated storage were nearly always, particularly after 14 days at 2 C, much lower than those of comparable samples packaged in polyvinyl chloride (PVC) film. The pH of vacuum-packaged livers and kidneys decreased during refrigerated storage; the same was true for products stored in PVC film except that the pH of kidneys increased. In refrigerated vacuum-packaged livers and kidneys, lactic acid bacteria (homo- and heterofermentative lactobacilli, streptococci, Leuconostoc sp.) became more predominant, whereas in products packaged in PVC film, gram-negative bacteria frequently became more dominant.


1987 ◽  
Vol 50 (7) ◽  
pp. 554-556 ◽  
Author(s):  
R. LEU ◽  
J. T. KEETON ◽  
D. B. GRIFFIN ◽  
J. W. SAVELL ◽  
C. VANDERZANT

Steaks and roasts were fabricated from strip loins and top rounds that were held vacuum packaged for 10 d at 2°C. Steaks and roasts then were treated with 2–3% DermatexR Food Grade (DFG), an acetylated monoglyceride, vacuum packaged and stored at 2 ± 2°C for up to 4 weeks (steaks) and 7 weeks (roasts). Aerobic plate counts (APC) and APT counts of control and DFG-treated steaks and roasts did not differ (P>0.05) during refrigerated storage. The microflora of steaks and roasts during storage was dominated by lactic acid bacteria. Treatment with DFG did not influence the microbiological characteristics of the steaks and roasts.


2007 ◽  
Vol 70 (12) ◽  
pp. 2732-2740 ◽  
Author(s):  
JOHN R. RUBY ◽  
JUN ZHU ◽  
STEVEN C. INGHAM

To develop a process for predicting the likelihood of Salmonella contamination on beef carcasses, we evaluated the influence of several possible causative factors (i.e., year, abattoir, day of week, month, and intervention system components) on the risk of Salmonella and indicator organism contamination. Hide and carcass sponge samples were collected in 2005 to 2006 in six steps at three abattoirs in the East (A), Midwest (B), and Southwest (C) United States. Each abattoir used the same intervention system. Samples were analyzed for aerobic plate counts (APCs; n = 18,990) and Enterobacteriaceae counts (EBCs; n = 18,989) and the presence or absence of Salmonella (n = 5,355). Our results demonstrated that many factors play a significant role in the level of microbial contamination of beef carcasses. Overall, Salmonella prevalence and EBC levels were significantly higher in 2006 than in 2005. APCs and EBCs were highest in abattoirs A (3.57 log CFU/100 cm2) and B (1.31 log CFU/100 cm2). The odds of detecting a positive Salmonella isolate were greatest in abattoir C and lowest in abattoir A. Across the three abattoirs, the overall intervention process effectively reduced microbiological contamination. Salmonella prevalence fell from 45% (preevisceration) to 0.47% (postchilled–lactic acid), and there were APC and EBC reductions of 5.43 and 5.28 log CFU/100 cm2, respectively, from hide-on to postchilled–lactic acid samples. At each abattoir, composites of three individual EBC-negative carcass samples yielded Salmonella-negative results 97 to 99% of the time. These results suggest the possibility of using indicator test results to accurately predict the absence of Salmonella in a beef carcass sample.


2019 ◽  
Vol 86 (4) ◽  
pp. 490-502 ◽  
Author(s):  
Saeed A. Hayek ◽  
Rabin Gyawali ◽  
Sulaiman O. Aljaloud ◽  
Albert Krastanov ◽  
Salam A. Ibrahim

AbstractThis review aims to familiarize the reader with research efforts on the cultivation media of lactic acid bacteria (LAB). We have also included a brief discussion on standard ingredients used in LAB media and chemically defined media as related to bacterial growth requirements. Recent research has focused on modifying standard media for the enumeration, differentiation, isolation, and identification of starter cultures and probiotics. Even though large numbers of these media have been developed to serve dairy microbial control, they have failed to provide consistent results. The research consequently points to the need to develop a reliable lactobacilli growth medium for the dairy industry.


2013 ◽  
Vol 79 (24) ◽  
pp. 7827-7836 ◽  
Author(s):  
Danilo Ercolini ◽  
Erica Pontonio ◽  
Francesca De Filippis ◽  
Fabio Minervini ◽  
Antonietta La Storia ◽  
...  

ABSTRACTThe bacterial ecology during rye and wheat sourdough preparation was described by 16S rRNA gene pyrosequencing. Viable plate counts of presumptive lactic acid bacteria, the ratio between lactic acid bacteria and yeasts, the rate of acidification, a permutation analysis based on biochemical and microbial features, the number of operational taxonomic units (OTUs), and diversity indices all together demonstrated the maturity of the sourdoughs during 5 to 7 days of propagation. Flours were mainly contaminated by metabolically active genera (Acinetobacter,Pantoea,Pseudomonas,Comamonas,Enterobacter,Erwinia, andSphingomonas) belonging to the phylumProteobacteriaorBacteroidetes(genusChryseobacterium). Their relative abundances varied with the flour. Soon after 1 day of propagation, this population was almost completely inhibited except for theEnterobacteriaceae. Although members of the phylumFirmicuteswere present at very low or intermediate relative abundances in the flours, they became dominant soon after 1 day of propagation. Lactic acid bacteria were almost exclusively representative of theFirmicutesby this time.Weissellaspp. were already dominant in rye flour and stably persisted, though they were later flanked by theLactobacillus sakeigroup. There was a succession of species during 10 days of propagation of wheat sourdoughs. The fluctuation between dominating and subdominating populations ofL. sakeigroup,Leuconostocspp.,Weissellaspp., andLactococcus lactiswas demonstrated. Other subdominant species such asLactobacillus plantarumwere detectable throughout propagation. As shown by PCR-denaturing gradient gel electrophoresis (PCR-DGGE) analysis,Saccharomyces cerevisiaedominated throughout the sourdough propagation. Notwithstanding variations due to environmental and technology determinants, the results of this study represent a clear example of how the microbial ecology evolves during sourdough preparation.


2011 ◽  
Vol 129 (3) ◽  
pp. 1211-1216 ◽  
Author(s):  
Esmeray Kuley ◽  
Fatih Özogul ◽  
Yesim Özogul ◽  
Ismail Akyol

2003 ◽  
Vol 84 (1) ◽  
pp. 117-123 ◽  
Author(s):  
M.Victoria Moreno-Arribas ◽  
M.Carmen Polo ◽  
Felisa Jorganes ◽  
Rosario Muñoz

Sign in / Sign up

Export Citation Format

Share Document