Primers and a Specific DNA Probe for Detecting Lactic Acid Bacteria Producing 3-Hydroxypropionaldehyde from Glycerol in Spoiled Ciders

2001 ◽  
Vol 64 (6) ◽  
pp. 833-837 ◽  
Author(s):  
OLIVIER CLAISSE ◽  
ALINE LONVAUD-FUNEL

Of the 40 strains isolated from several spoiled ciders where glycerol was degraded, 36 were identified as Lactobacillus collinoides, three were Lactobacillus hilgardii, and one was Lactobacillus mali. However, only 30 L. collinoides and two L. hilgardii could degrade glycerol. The glycerol dehydratase activity was shown. The main product of the transformation was 1,3 propanediol. Two DNA primers GD1 and GD2 were chosen in the region encoding one of the subunits of glycerol dehydratase of Citrobacter freundii, Klebsiella pneumoniae, Klebsiella oxytoca, Salmonella Typhimurium, and Clostridium pasteurianum. A 279-bp amplicon in polymerase chain reaction amplification was obtained with the genomic L. collinoides IOEB 9527 DNA as template. The amino acid sequence deduced from the amplicon DNA sequence showed a very high similarity and identity with the gene of gram-negative and C. pasteurianum species. After labeling, the amplicon was used as DNA probe in dot-blot hybridization with the genomic DNA of all the tested strains. Only strains that could degrade glycerol hybridized. Moreover, polymerase chain reactions using GD1 and GD2 revealed only glycerol dehydratase genes of positive L. collinoides and L. hilgardii strains. The primers and the amplicon proved to be suitable and reliable tools to detect the lactic acid bacteria involved in the deterioration of cider.

1992 ◽  
Vol 12 (2) ◽  
pp. 800-810
Author(s):  
K S Chang ◽  
S A Stass ◽  
D T Chu ◽  
L L Deaven ◽  
J M Trujillo ◽  
...  

A nonrandom chromosomal translocation breakpoint, t(15;17)(q22;q21), is found in almost all patients with acute promyelocytic leukemia (APL). Most of these breakpoints occur within the second intron of the retinoic acid receptor-alpha (RARA) gene. We screened a cDNA library of APL and have identified and sequenced a cDNA transcribed from the t(15;17) translocation breakpoint. The 5' end of cDNA p1715 consists of 503 bp of the RARA exon II sequence. A 1.76-kb cDNA without homology to any known gene available in GenBank was found truncated downstream. This cDNA sequence was assigned to chromosome 15 by dot blot hybridization of the flow cytometry-sorted chromosomes. We designate this fusion cDNA RARA/myl, which is different from myl/RARA reported by de The et al. (H. de The, C. Chomienne, M. Lanotte, L. Degos, and A. Dejean, Nature (London) 347:558-561, 1990). This result demonstrates that the two different types of hybrid mRNA can be transcribed from this breakpoint. We screened a non-APL cDNA library and identified a 2.8-kb myl cDNA. This cDNA is able to encode a polypeptide with a molecular weight of 78,450. Alternative splicing of the myl gene which resulted in myl proteins with different C terminals was found. Southern blot analysis of the genomic DNA isolated from 17 APL patients by using the myl DNA probe demonstrated that the myl gene in 12 samples was rearranged. Northern (RNA) blot analysis of RARA gene expression in two APL RNA samples showed abnormal mRNA species of 4.2 and 3.2 kb in one patient and of 4.8 and 3.8 kb in another patient; these were in addition to the normal mRNA species of 3.7 and 2.7-kb. The myl DNA probe detected a 2.6-kb abnormal mRNA in addition to the normal mRNA species of 3.2, 4.2, and 5.5 kb. Using the polymerase chain reaction, we demonstrated that both RARA/myl and myl/RARA were coexpressed in samples from three different APL patients. From this study, we conclude that the t(15;17) translocation breakpoint results in the transcription of two different fusion transcripts which are expected to be translated into fusion proteins.


2020 ◽  
Vol 8 (10) ◽  
pp. 1578 ◽  
Author(s):  
Massimo Iorizzo ◽  
Gianfranco Pannella ◽  
Silvia Jane Lombardi ◽  
Sonia Ganassi ◽  
Bruno Testa ◽  
...  

Lactic acid bacteria could positively affect the health of honey bees, including nutritional supplementation, immune system development and pathogen colonization resistance. Based on these considerations the present study evaluated predominant Lactic Acid Bacteria (LAB) species from beebread as well as from the social stomach and midgut of Apis mellifera ligustica honey bee foragers. In detail, for each compartment, the diversity in species and biotypes was ascertained through multiple culture-dependent approaches, consisting of Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE), 16S rRNA gene sequencing and Randomly Amplified Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR). The study of a lactic acid bacteria community, performed with PCR-DGGE and sequence analysis targeting the V1–V3 region of the 16S rRNA gene (rDNA), highlighted the presence of a few species, including Apilactobacillus kunkeei, Lactiplantibacillus plantarum, Fructobacillus fructosus, Levilactobacillus brevis and Lactobacillus delbrueckii subsp. lactis. Depending on the different compartments, diverse levels of biodiversity in species were found. Particularly, a very low inter-species biodiversity was detected in the midgut that was prevalently dominated by the presence of Apilactobacillus kunkeei. On the other hand, the beebread was characterized by a reasonable biodiversity showing the presence of five species and the predominance of Apilactobacillus kunkeei, Lactiplantibacillus plantarum and Fructobacillus fructosus. The RAPD-PCR analysis performed on the three predominant species allowed the differentiation into several biotypes for each species. Moreover, a relationship between biotypes and compartments has been detected and each biotype was able to express a specific biochemical profile. The biotypes that populated the social stomach and midgut were able to metabolize sugars considered toxic for bees while those isolated from beebread could contribute to release useful compounds with functional properties. Based on this knowledge, new biotechnological approaches could be developed to improve the health of honey bees and the quality of bee products.


Blood ◽  
1988 ◽  
Vol 71 (5) ◽  
pp. 1357-1360 ◽  
Author(s):  
SP Cai ◽  
JZ Zhang ◽  
DH Huang ◽  
ZX Wang ◽  
YW Kan

Abstract We describe a simple approach for detecting beta-thalassemia mutations in geographic areas such as southern China where multiple mutations are known to occur. Segments of the beta-globin gene were amplified in vitro by using the polymerase chain reaction. Dot blot hybridization of the amplified DNA with oligonucleotide probes corresponding to the six mutations found in southern China could directly identify the mutations causing beta-thalassemia in the affected families. The increased number of target sequences after amplification allows the use of 35S-labeled probes, which are reusable for up to 3 months. The mutations can be determined in two days.


Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 233
Author(s):  
Rosangela Marasco ◽  
Mariagiovanna Gazzillo ◽  
Nicoletta Campolattano ◽  
Margherita Sacco ◽  
Lidia Muscariello

In southern Italy, some artisanal farms produce mozzarella and caciocavallo cheeses by using natural whey starter (NWS), whose microbial diversity is responsible for the characteristic flavor and texture of the final product. We studied the microbial community of NWS cultures of cow’s milk (NWSc) for the production of caciocavallo and buffalo’s milk (NWSb) for the production of mozzarella, both from artisanal farms. Bacterial identification at species and strain level was based on an integrative strategy, combining culture-dependent (sequencing of the 16S rDNA, species/subspecies-specific Polymerase Chain Reaction (PCR) and clustering by Random Amplified Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR) and culture-independent (next-generation sequencing analysis, NGS) approaches. Results obtained with both approaches showed the occurrence of five species of lactic acid bacteria in NWSb (Lactococcus lactis subsp. lactis, Lactobacillus fermentum, Streptococcus thermophilus, Lactobacillus delbrueckii, and Lactobacillus helveticus) and five species in NWSc (Lc. lactis subsp. lactis, Enterococcus faecium, and S. thermophilus, Lb. helveticus, and Lb. delbrueckii), with the last two found only by the NGS analysis. Moreover, RAPD profiles, performed on Lc. lactis subsp. lactis different isolates from both NWSs, showed nine strains in NWSb and seven strains in NWSc, showing a microbial diversity also at strain level. Characterization of the microbiota of natural whey starters aims to collect new starter bacteria to use for tracing microbial community during the production of artisanal cheeses, in order to preserve their quality and authenticity, and to select new Lactic Acid Bacteria (LAB) strains for the production of functional foods.


Sign in / Sign up

Export Citation Format

Share Document