Inactivation of Escherichia coli O157:H7, Salmonella Enteritidis, and Listeria monocytogenes on Apples, Oranges, and Tomatoes by Lactic Acid with Hydrogen Peroxide

2002 ◽  
Vol 65 (1) ◽  
pp. 100-105 ◽  
Author(s):  
KUMAR S. VENKITANARAYANAN ◽  
CHIA-MIN LIN ◽  
HANNALORE BAILEY ◽  
MICHAEL P. DOYLE

The objective of this study was to develop a practical and effective method for inactivating or substantially reducing Escherichia coli O157:H7, Salmonella Enteritidis, and Listeria monocytogenes on apples, oranges, and tomatoes. Apples, oranges, and tomatoes were spot-inoculated with five-strain mixtures of E. coli O157:H7, Salmonella Enteritidis, and L. monocytogenes near the stem end and were submerged in sterile deionized water containing 1.5% lactic acid plus 1.5% hydrogen peroxide for 15 min at 40°C. Inoculated samples treated with sterile deionized water at the same temperature and for the same duration served as controls. The bacterial pathogens on fruits subjected to the chemical treatment were reduced by >5.0 log10 CFU per fruit, whereas washing in deionized water decreased the pathogens by only 1.5 to 2.0 log10 CFU per fruit. Furthermore, substantial populations of the pathogens survived in the control wash water, whereas no E. coli O157:H7, Salmonella Enteritidis, or L. monocytogenes cells were detected in the chemical treatment solution. The sensory and qualitative characteristics of apples treated with the chemical wash solution were not adversely affected by the treatment. It was found that the treatment developed in this study could effectively be used to kill E. coli O157:H7, Salmonella Enteritidis, and L. monocytogenes on apples, oranges, and tomatoes at the processing or packaging level.

2002 ◽  
Vol 65 (8) ◽  
pp. 1215-1220 ◽  
Author(s):  
CHIA-MIN LIN ◽  
SARAH S. MOON ◽  
MICHAEL P. DOYLE ◽  
KAY H. McWATTERS

Iceberg lettuce is a major component in vegetable salad and has been associated with many outbreaks of foodborne illnesses. In this study, several combinations of lactic acid and hydrogen peroxide were tested to obtain effective antibacterial activity without adverse effects on sensory characteristics. A five-strain mixture of Escherichia coli O157:H7, Salmonella enterica serotype Enteritidis, and Listeria monocytogenes was inoculated separately onto fresh-cut lettuce leaves, which were later treated with 1.5% lactic acid plus 1.5% hydrogen peroxide (H2O2) at 40°C for 15 min, 1.5% lactic acid plus 2% H2O2 at 22°C for 5 min, and 2% H2O2 at 50°C for 60 or 90 s. Control lettuce leaves were treated with deionized water under the same conditions. A 4-log reduction was obtained for lettuce treated with the combinations of lactic acid and H2O2 for E. coli O157:H7 and Salmonella Enteritidis, and a 3-log reduction was obtained for L. monocytogenes. However, the sensory characteristics of lettuce were compromised by these treatments. The treatment of lettuce leaves with 2% H2O2 at 50°C was effective not only in reducing pathogenic bacteria but also in maintaining good sensory quality for up to 15 days. A ≤4-log reduction of E. coli O157:H7 and Salmonella Enteritidis was achieved with the 2% H2O2 treatment, whereas a 3-log reduction of L. monocytogenes was obtained. There was no significant difference (P > 0.05) between pathogen population reductions obtained with 2% H2O2 with 60- and 90-s exposure times. Hydrogen peroxide residue was undetectable (the minimum level of sensitivity was 2 ppm) on lettuce surfaces after the treated lettuce was rinsed with cold water and centrifuged with a salad spinner. Hence, the treatment of lettuce with 2% H2O2 at 50°C for 60 s is effective in initially reducing substantial populations of foodborne pathogens and maintaining high product quality.


1999 ◽  
Vol 65 (9) ◽  
pp. 4276-4279 ◽  
Author(s):  
Kumar S. Venkitanarayanan ◽  
Gabriel O. Ezeike ◽  
Yen-Con Hung ◽  
Michael P. Doyle

ABSTRACT The efficacy of electrolyzed oxidizing water for inactivatingEscherichia coli O157:H7, Salmonella enteritidis, and Listeria monocytogenes was evaluated. A five-strain mixture of E. coli O157:H7,S. enteritidis, or L. monocytogenes of approximately 108 CFU/ml was inoculated in 9 ml of electrolyzed oxidizing water (treatment) or 9 ml of sterile, deionized water (control) and incubated at 4 or 23°C for 0, 5, 10, and 15 min; at 35°C for 0, 2, 4, and 6 min; or at 45°C for 0, 1, 3, and 5 min. The surviving population of each pathogen at each sampling time was determined on tryptic soy agar. At 4 or 23°C, an exposure time of 5 min reduced the populations of all three pathogens in the treatment samples by approximately 7 log CFU/ml, with complete inactivation by 10 min of exposure. A reduction of ≥7 log CFU/ml in the levels of the three pathogens occurred in the treatment samples incubated for 1 min at 45°C or for 2 min at 35°C. The bacterial counts of all three pathogens in control samples remained the same throughout the incubation at all four temperatures. Results indicate that electrolyzed oxidizing water may be a useful disinfectant, but appropriate applications need to be validated.


1999 ◽  
Vol 62 (8) ◽  
pp. 857-860 ◽  
Author(s):  
KUMAR S. VENKITANARAYANAN ◽  
GABRIEL O. I. EZEIKE ◽  
YEN-CON HUNG ◽  
MICHAEL P. DOYLE

One milliliter of culture containing a five-strain mixture of Escherichia coli O157:H7 (∼1010 CFU) was inoculated on a 100-cm2 area marked on unscarred cutting boards. Following inoculation, the boards were air-dried under a laminar flow hood for 1 h, immersed in 2 liters of electrolyzed oxidizing water or sterile deionized water at 23°C or 35°C for 10 or 20 min; 45°C for 5 or 10 min; or 55°C for 5 min. After each temperature–time combination, the surviving population of the pathogen on cutting boards and in soaking water was determined. Soaking of inoculated cutting boards in electrolyzed oxidizing water reduced E. coli O157:H7 populations by ≥5.0 log CFU/100 cm2 on cutting boards. However, immersion of cutting boards in deionized water decreased the pathogen count only by 1.0 to 1.5 log CFU/100 cm2. Treatment of cutting boards inoculated with Listeria monocytogenes in electrolyzed oxidizing water at selected temperature–time combinations (23°C for 20 min, 35°C for 10 min, and 45°C for 10 min) substantially reduced the populations of L. monocytogenes in comparison to the counts recovered from the boards immersed in deionized water. E. coli O157:H7 and L. monocytogenes were not detected in electrolyzed oxidizing water after soaking treatment, whereas the pathogens survived in the deionized water used for soaking the cutting boards. This study revealed that immersion of kitchen cutting boards in electrolyzed oxidizing water could be used as an effective method for inactivating foodborne pathogens on smooth, plastic cutting boards.


2004 ◽  
Vol 67 (7) ◽  
pp. 1497-1500 ◽  
Author(s):  
Y. INATSU ◽  
M. L. BARI ◽  
S. KAWASAKI ◽  
K. ISSHIKI

The survival of gram-positive and gram-negative foodborne pathogens in both commercial and laboratory-prepared kimchi (a traditional fermented food widely consumed in Japan) was investigated. It was found that Escherichia coli O157:H7, Salmonella Enteritidis, Staphylococcus aureus, and Listeria monocytogenes could survive in both commercial and laboratory-prepared kimchi inoculated with these pathogens and incubated at 10°C for 7 days. However, when incubation was prolonged, the S. aureus level decreased rapidly from the initial inoculum level to the minimum detectable level within 12 days, whereas Salmonella Enteritidis and L. monocytogenes took 16 days to reach similar levels in commercial kimchi. On the other hand, E. coli O157:H7 remained at high levels throughout the incubation period. For laboratory-prepared kimchi, the S. aureus level decreased rapidly from the initial inoculum level to the minimum detectable level within 12 days, and L. monocytogenes took 20 days to reach a similar level. E. coli O157:H7 and Salmonella Enteritidis remained at high levels throughout the incubation period. The results of this study suggest that the contamination of kimchi with E. coli O157:H7, Salmonella Enteritidis, S. aureus, or L. monocytogenes at any stage of production or marketing could pose a potential risk.


2006 ◽  
Vol 69 (3) ◽  
pp. 582-590 ◽  
Author(s):  
PASCALE M. PIERRE ◽  
ELLIOT T. RYSER

Alfalfa seeds were inoculated with a three-strain cocktail of Escherichia coli O157:H7, Salmonella enterica subsp. enterica serovar Typhimurium DT104, or Listeria monocytogenes by immersion to contain ∼6 to 8 log CFU/g and then treated with a fatty acid–based sanitizer containing 250 ppm of peroxyacid, 1,000 ppm of caprylic and capric acids (Emery 658), 1,000 ppm of lactic acid, and 500 ppm of glycerol monolaurate at a reference concentration of 1×. Inoculated seeds were immersed at sanitizer concentrations of 5×, 10×, and 15× for 1, 3, 5, and 10 min and then assessed for pathogen survivors by direct plating. The lowest concentration that decreased all three pathogens by >5 log was 15×. After a 3-min exposure to the 15× concentration, populations of E. coli O157:H7, Salmonella Typhimurium DT104, and L. monocytogenes decreased by >5.45, >5.62, and >6.92 log, respectively, with no sublethal injury and no significant loss in seed germination rate or final sprout yield. The components of this 15× concentration (treatment A) were assessed independently and in various combinations to optimize antimicrobial activity. With inoculated seeds, treatment C (15,000 ppm of Emery 658, 15,000 ppm of lactic acid, and 7,500 ppm of glycerol monolaurate) decreased Salmonella Typhimurium, E. coli O157:H7, and L. monocytogenes by 6.23 and 5.57 log, 4.77 and 6.29 log, and 3.86 and 4.21 log after 3 and 5 min of exposure, respectively. Treatment D (15,000 ppm of Emery 658 and 15,000 ppm of lactic acid) reduced Salmonella Typhimurium by >6.90 log regardless of exposure time and E. coli O157:H7 and L. monocytogenes by 4.60 and >5.18 log and 3.55 and 3.14 log after 3 and 5 min, respectively. No significant differences (P > 0.05) were found between treatments A, C, and D. Overall, treatment D, which contained Emery 658 and lactic acid as active ingredients, reduced E. coli O157:H7, Salmonella Typhimurium, and L. monocytogenes populations by 3.55 to >6.90 log and may provide a viable alternative to the recommended 20,000 ppm of chlorine for sanitizing alfalfa seeds.


2009 ◽  
Vol 72 (6) ◽  
pp. 1201-1208 ◽  
Author(s):  
HUA YANG ◽  
PATRICIA A. KENDALL ◽  
LYDIA MEDEIROS ◽  
JOHN N. SOFOS

Solutions of selected household products were tested for their effectiveness against Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella Typhimurium. Hydrogen peroxide (1.5 and 3%), vinegar (2.5 and 5% acetic acid), baking soda (11, 33, and 50% sodium bicarbonate), household bleach (0.0314, 0.0933, and 0.670% sodium hypochlorite), 5% acetic acid (prepared from glacial acetic acid), and 5% citric acid solutions were tested against the three pathogens individually (five-strain composites of each, 108 CFU/ml) by using a modified AOAC International suspension test at initial temperatures of 25 and 55°C for 1 and 10 min. All bleach solutions (pH 8.36 to 10.14) produced a >5-log reduction of all pathogens tested after 1 min at 25°C, whereas all baking soda solutions (pH 7.32 to 7.55) were ineffective (<1-log reduction) even after 10 min at an initial temperature of 55°C. After 1 min at 25°C, 3% hydrogen peroxide (pH 2.75) achieved a >5-log reduction of both Salmonella Typhimurium and E. coli O157:H7, whereas undiluted vinegar (pH 2.58) had a similar effect only against Salmonella Typhimurium. Compared with 1 min at 25°C, greater reductions of L. monocytogenes (P < 0.05) were obtained with all organic acid and hydrogen peroxide treatments after 10 min at an initial temperature of 55°C. The efficacies of household compounds against all tested pathogens decreased in the following order: 0.0314% sodium hypochlorite > 3% hydrogen peroxide > undiluted vinegar and 5% acetic acid > 5% citric acid > baking soda (50% sodium bicarbonate). The sensitivity of the tested pathogens to all tested household compounds followed the sequence of Salmonella Typhimurium > E. coli O157: H7 > L. monocytogenes.


2020 ◽  
Vol 83 (2) ◽  
pp. 266-276
Author(s):  
JOELLE K. SALAZAR ◽  
LAUREN J. GONSALVES ◽  
VIDYA NATARAJAN ◽  
ARLETTE SHAZER ◽  
KARL REINEKE ◽  
...  

ABSTRACT Cheeses made with unpasteurized milk are a safety concern due to possible contamination with foodborne pathogens. Listeria monocytogenes and Escherichia coli O157:H7 have been implicated in several outbreaks and recalls linked to Gouda cheese made with unpasteurized milk. The U.S. Food and Drug Administration Code of Federal Regulations requires cheeses made with unpasteurized milk to be aged at a minimum of 1.7°C for at least 60 days before entering interstate commerce. The goal of this study was (i) to assess the population dynamics of L. monocytogenes and E. coli O157:H7 during aging of Gouda cheese when the pathogens were inoculated into the unpasteurized milk used for manufacture and (ii) to compare the native microbial populations throughout manufacture and aging. Unpasteurized milk was inoculated with L. monocytogenes at 1 or 3 log CFU/mL or with E. coli O157:H7 at 1 log CFU/mL, and Gouda cheese was manufactured in laboratory-scale or pilot plant–scale settings. Cheeses were stored at 10°C for at least 90 days, and some cheeses were stored up to 163 days. Initial native microflora populations in unpasteurized milk did not differ significantly for laboratory-scale or pilot plant–scale trials, and population dynamics trended similarly throughout cheese manufacture and aging. During manufacture, approximately 81% of the total L. monocytogenes and E. coli O157:H7 populations was found in the curd samples. At an inoculation level of 1 log CFU/mL, L. monocytogenes survived in the cheese beyond 60 days in four of five trials. In contrast, E. coli O157:H7 was detected beyond 60 days in only one trial. At the higher 3-log inoculation level, the population of L. monocytogenes increased significantly from 3.96 ± 0.07 log CFU/g at the beginning of aging to 6.00 ± 0.73 log CFU/g after 150 days, corresponding to a growth rate of 0.04 ± 0.02 log CFU/g/day. The types of native microflora assessed included Enterobacteriaceae, lactic acid bacteria, mesophilic bacteria, and yeasts and molds. Generally, lactic acid and mesophilic bacterial populations remained consistent at approximately 8 to 9 log CFU/g during aging, whereas yeast and mold populations steadily increased. The data from this study will contribute to knowledge about survival of these pathogens during Gouda cheese production and will help researchers assess the risks of illness from consumption of Gouda cheese made with unpasteurized milk. HIGHLIGHTS


2003 ◽  
Vol 66 (4) ◽  
pp. 542-548 ◽  
Author(s):  
M. L. BARI ◽  
Y. SABINA ◽  
S. ISOBE ◽  
T. UEMURA ◽  
K. ISSHIKI

A study was conducted to evaluate the efficacy of electrolyzed acidic water, 200-ppm chlorine water, and sterile distilled water in killing Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes on the surfaces of spot-inoculatedtomatoes. Inoculated tomatoes were sprayed with electrolyzed acidic water, 200-ppm chlorine water, and sterile distilled water (control) and rubbed by hand for 40 s. Populations of E. coli O157:H7, Salmonella, and L. monocytogenes in the rinse water and in the peptone wash solution were determined. Treatment with 200-ppm chlorine water and electrolyzed acidic water resulted in 4.87- and 7.85-log10 reductions, respectively, in Escherichia coli O157:H7 counts and 4.69- and 7.46-log10 reductions, respectively, in Salmonella counts. Treatment with 200-ppm chlorine water and electrolyzed acidic water reduced the number of L. monocytogenes by 4.76 and 7.54 log10 CFU per tomato, respectively. This study's findings suggest that electrolyzed acidic water could be useful in controlling pathogenic microorganisms on fresh produce.


2012 ◽  
Vol 75 (2) ◽  
pp. 245-254 ◽  
Author(s):  
TYANN BLESSINGTON ◽  
ELIZABETH J. MITCHAM ◽  
LINDA J. HARRIS

The survival of single strains or cocktails of Salmonella, Escherichia coli O157:H7, and Listeria monocytogenes was evaluated on walnut kernels. Kernels were separately inoculated with an aqueous preparation of the pathogens at 3 to 10 log CFU/g, dried for 7 days, and then stored at 23°C for 3 weeks to more than 1 year. A rapid decrease of 1 to greater than 4 log CFU/g was observed as the inoculum dried. In some cases, the time of storage at 23°C did not influence bacterial levels, and in other cases the calculated rates of decline for Salmonella (0.05 to 0.35 log CFU/g per month) and E. coli O157:H7 (0.21 to 0.86 log CFU/g per month) overlapped and were both lower than the range of calculated declines for L. monocytogenes (1.1 to 1.3 log CFU/g per month). In a separate study, kernels were inoculated with Salmonella Enteritidis PT 30 at 4.2 log CFU/g, dried (final level, 1.9 log CFU/g), and stored at −20, 4, and 23°C for 1 year. Salmonella Enteritidis PT 30 declined at a rate of 0.10 log CFU/g per month at 23°C; storage time did not significantly affect levels on kernels stored at −20 or 4°C. These results indicate the long-term viability of Salmonella, E. coli O157:H7, and L. monocytogenes on walnut kernels and support inclusion of these organisms in hazard assessments.


2001 ◽  
Vol 64 (6) ◽  
pp. 788-795 ◽  
Author(s):  
ADRIENNE E. H. SHEARER ◽  
CHRISTINE M. STRAPP ◽  
ROLF D. JOERGER

A polymerase chain reaction (PCR)-based detection system, BAX, was evaluated for its sensitivity in detecting Salmonella Enteritidis, Escherichia coli O157:H7, Listeria sp., and Listeria monocytogenes on fresh produce. Fifteen different types of produce (alfalfa sprouts, green peppers, parsley, white cabbage, radishes, onions, carrots, mushrooms, leaf lettuce, tomatoes, strawberries, cantaloupe, mango, apples, and oranges) were inoculated, in separate studies, with Salmonella Enteritidis, E. coli O157:H7, and L. monocytogenes down to the predicted level of 1 CFU per 25-g sample. Detection by BAX was compared to recovery of the inoculated bacteria by culture methods according to the Food and Drug Administration's (FDA) Bacteriological Analytical Manual (BAM). BAX was essentially as sensitive as the culture-based method in detecting Salmonella Enteritidis and L. monocytogenes and more sensitive than the culture-based method for the detection of E. coli O157:H7 on green pepper, carrot, radish, and sprout samples. Detection of the pathogenic bacteria in samples spiked with a predicted number of less than 10 CFU was possible for most produce samples, but both methods failed to detect L. monocytogenes on carrot samples and one of two mushroom and onion samples spiked with less than 100 CFU. Both BAX and the culture method were also unable to consistently recover low numbers of E. coli O157:H7 from alfalfa sprouts. The PCR method allowed detection of Salmonella Enteritidis, E. coli O157:H7, and L. monocytogenes at least 2 days earlier than the conventional culture methods.


Sign in / Sign up

Export Citation Format

Share Document