Impact of pH Enhancement on Populations of Salmonella, Listeria monocytogenes, and Escherichia coli O157:H7 in Boneless Lean Beef Trimmings†

2003 ◽  
Vol 66 (5) ◽  
pp. 874-877 ◽  
Author(s):  
STEVEN E. NIEBUHR ◽  
J. S. DICKSON

Boneless lean beef trimmings were inoculated with multiple strains of salmonellae, Listeria monocytogenes, and Escherichia coli O157:H7 at levels of ca. 6 log10 CFU/g. pH enhancement with ammonia gas was then used to increase the pH of the trimmings to ca. 9.6. The product was then frozen, chipped, and compressed into blocks. pH enhancement reduced the populations of salmonellae, L. monocytogenes, and E. coli O157:H7 by approximately 4, 3, and 1 log10 cycles, respectively. After the product had been frozen and compressed into blocks, no salmonellae or E. coli O157:H7 were detectable by enumeration or after enrichment and isolation. The final populations of L. monocytogenes were reduced by ca. 3 log10 cycles relative to the initial populations. When uninoculated pH-enhanced lean boneless trimmings were blended with inoculated ground beef to a final concentration of 15% (wt/wt), pathogen populations in the ground beef were reduced by approximately 0.2 log10 cycles.

1996 ◽  
Vol 59 (4) ◽  
pp. 370-373 ◽  
Author(s):  
R. K. PODOLAK ◽  
J. F. ZAYAS ◽  
C. L. KASTNER ◽  
D. Y. C. FUNG

Lean beef surfaces were inoculated with Escherichia coli O157:H7 and Listeria monocytogenes and then sanitized with fumaric, acetic, or lactic acid alone and in combined solutions of those acids at 55°C for 5 s. The initial inoculum level was 8.62 log CFU/cm2 and 5.13 log CFU/cm2 for L. monocytogenes and E. coli O157:H7, respectively. Fumaric acid at a concentration of 1% was the most effective acid in reducing the populations of L. monocytogenes by up to 1 log unit and E. coli O157:H7 by up to 1.3 log units when compared with acetic or lactic acids. The rank order of acids tested against the growth of L. monocytogenes and E. coli O157:H7 was fumaric acid followed by lactic and acetic acids. Fumaric acid at concentrations of 1.0% and 1.5% was more effective than any of the combined solutions of acids.


1997 ◽  
Vol 60 (12) ◽  
pp. 1560-1563 ◽  
Author(s):  
D. E. CONNER ◽  
J. S. KOTROLA ◽  
W. B. MIKEL ◽  
K. C. TAMBLYN

The efficacy of organic acid sprays for eliminating Escherichia coli O157:H7 and Listeria monocytogenes from beef trim used in a model ground beef production scheme was determined. Beef trim pieces with ca. 20% fat inoculated with E. coli O157:H7 or L. monocytogenes (ca. 3 log10 CFU/g) were utilized as controls or treated by spraying with 2 or 4% acetic and lactic acids. Propylene glycol (20%) was the carrier for each treatment. Following acid treatment, intact pieces were stored at 4°C for 12 or 24 h, ground, divided into 4 100-g retail packages and stored at 4°C for 0, 1, 2, or 4 days, at which time surviving populations of E. coli O157:H7 or L. monocytogenes were enumerated. High populations (>2.6 log10 CFU/g) of the pathogens persisted in all treatments. The 2% acid spray reduced (P < 0.01) the E. coli O157:H7 population by only 0.1 log10 CFU/g. The 2 and 4% acid sprays reduced (P < 0.001) the L. monocytogenes populations by 0.36 and 0.44 log10 CFU/g, respectively. Storing beef trim intact prior to grinding resulted in lower populations of E. coli O157:H7, and storage following grinding did not affect populations of either pathogen. The acid treatments tested were only slightly effective as sanitizers for beef trim destined for ground beef production.


2002 ◽  
Vol 65 (12) ◽  
pp. 1976-1980 ◽  
Author(s):  
BARBARA B. ADLER ◽  
LARRY R. BEUCHAT

Garlic is known to have antimicrobial activity against several spoilage and pathogenic bacteria. However, the fate of Salmonella, Escherichia coli O157:H7, and Listeria monocytogenes in garlic butter has not been reported. This study was undertaken to determine the viability of these organisms in garlic butter as affected by the type of raw minced garlic added to the butter, storage temperature, and storage time. Unsalted butter at 40°C was combined with raw minced jumbo, elephant, or small-cloved garlic at a 4:1 butter/garlic ratio (wt/wt), inoculated with mixed-strain suspensions of Salmonella, E. coli O157:H7, or L. monocytogenes, and stored at 4.4, 21, or 37°C for up to 48 h. All pathogens retained their viability at 4.4°C, regardless of the presence of garlic. The addition of garlic to butter enhanced the rates of inactivation of all three pathogens at 21 and 37°C. The most rapid decline in pathogen populations was observed at 37°C. The inactivation of L. monocytogenes occurred more slowly than did that of Salmonella or E. coli O157:H7. The inactivation of Salmonella and L. monocytogenes was more rapid in jumbo garlic butter than in elephant or small-cloved garlic butter. It is concluded that Salmonella, E. coli O157:H7, and L. monocytogenes did not grow in unsalted butter, with or without garlic added (20%, wt/wt), when inoculated products were stored at 4.4, 21, and 37°C for up to 48 h.


2011 ◽  
Vol 74 (9) ◽  
pp. 1552-1557 ◽  
Author(s):  
O. RODRÍGUEZ-GARCIA ◽  
V. M. GONZÁLEZ-ROMERO ◽  
E. FERNÁNDEZ-ESCARTÍN

This study was intended to evaluate the bactericidal effect of electrolyzed oxidizing water (EOW) and chlorinated water on populations of Salmonella enterica, Escherichia coli O157:H7, and Listeria monocytogenes inoculated on avocados (Persea americana var. Hass). In the first experiment, inoculated avocados were treated with a water wash applied by spraying tap water containing 1 mg/liter free chlorine for 15 s (WW); WW treatment and then spraying sodium hypochlorite in water containing 75 mg/liter free chlorine for 15 s (Cl75); WW treatment and then spraying alkaline EOW for 30 s (AkEW) and then spraying acid EOW (AcEW) for 15 s; and spraying AkEW and then AcEW. In another experiment, the inoculated avocados were treated by spraying AkEW and then AcEW for 15, 30, 60, or 90 s. All three pathogen populations were lowered between 3.6 and 3.8 log cycles after WW treatment. The application of Cl75 did not produce any further reduction in counts, whereas AkEW and then AcEW treatment resulted in significantly lower bacterial counts for L. monocytogenes and E. coli O157:H7 but not for Salmonella. Treatments with AkEW and then AcEW produced a significant decrease in L. monocytogenes, Salmonella, and E. coli O157:H7 populations, with estimated log reductions of 3.9 to 5.2, 5.1 to 5.9, and 4.2 to 4.9 log CFU/cm2, respectively. Spraying AcEW for more than 15 s did not produce any further decrease in counts of Salmonella or E. coli O157:H7, whereas L. monocytogenes counts were significantly lower after spraying AcEW for 60 s. Applying AkEW and then AcEW for 15 or 30 s seems to be an effective alternative to reduce bacterial pathogens on avocado surfaces.


2006 ◽  
Vol 69 (2) ◽  
pp. 441-443 ◽  
Author(s):  
M. SAMADPOUR ◽  
M. W. BARBOUR ◽  
T. NGUYEN ◽  
T.-M. CAO ◽  
F. BUCK ◽  
...  

The objective of this study was to determine the prevalence of enterohemorrhagic Escherichia coli (EHEC), E. coli O157, Salmonella, and Listeria monocytogenes in retail food samples from Seattle, Wash. A total of 2,050 samples of ground beef (1,750 samples), mushrooms (100 samples), and sprouts (200 samples) were collected over a 12-month period and analyzed for the presence of these pathogens. PCR assays, followed by culture confirmation were used to determine the presence or absence of each organism. Of the 1,750 ground beef samples analyzed, 61 (3.5%) were positive for EHEC, and 20 (1.1%) of these were positive for E. coli O157. Salmonella was present in 67 (3.8%) of the 1,750 ground beef samples. Of 512 ground beef samples analyzed, 18 (3.5%) were positive for L. monocytogenes. EHEC was found in 12 (6.0%) of the 200 sprout samples, and 3 (1.5%) of these yielded E. coli O157. Of the 200 total sprout samples, 14 (7.0%) were positive for Salmonella and none were positive for L. monocytogenes. Among the 100 mushroom samples, 4 (4.0%) were positive for EHEC but none of these 4 samples were positive for E. coli O157. Salmonella was detected in 5 (5.0%) of the mushroom samples, and L. monocytogenes was found in 1 (1.0%) of the samples.


2001 ◽  
Vol 64 (12) ◽  
pp. 1929-1934 ◽  
Author(s):  
THIRUNAVUKKARASU ANNAMALAI ◽  
KUMAR S. VENKITANARAYANAN ◽  
THOMAS A. HOAGLAND ◽  
MAZHAR I. KHAN

This study reports the antibacterial effect of PR-26, a synthetic peptide derived from the first 26 amino acid sequence of PR-39, an antimicrobial peptide isolated from porcine neutrophils. A three-strain mixture of Escherichia coli O157:H7 or Listeria monocytogenes of approximately 108 CFU was inoculated to a final concentration of 107 CFU/ml in 1% peptone water (pH 7.0), containing 50 or 75 μg/ml of PR-26, and incubated at 37°C for 0, 6, 12, and 24 h; at 24°C for 0, 12, 24, and 36 h; or at 10 or 4°C for 0, 24, 72, and 120 h. Control samples included 1% peptone water inoculated with each pathogen mixture but containing no PR-26. The surviving population of each pathogen at each sampling time was determined by plating on tryptic soy agar with incubation at 37°C for 24 h. At 37°C, PR-26 decreased E. coli O157:H7 and L. monocytogenes populations by >5.0 log CFU/ml at 12 h, with complete inactivation at 24 h. At 24°C, PR-26 reduced E. coli O157:H7 and L. monocytogenes by approximately 3.5, 4.0, and 4.5 log CFU/ml at the end of 12-, 24-, and 36-h incubations, respectively. At 4 and 10°C, the inhibitory effect of PR-26 on E. coli O157:H7 and L. monocytogenes was significantly lower (P < 0.05) than that at 37 and 24°C; a 2- to 3-log CFU/ml reduction was observed at 120-h incubation. Results indicate that PR-26 could potentially be used as an antimicrobial agent, but applications in appropriate foods need to be validated.


2002 ◽  
Vol 65 (1) ◽  
pp. 196-198 ◽  
Author(s):  
C. A. HOOPER-KINDER ◽  
P. M. DAVIDSON ◽  
S. K. DUCKETT

An experiment was conducted to determine the effects of the dark, firm, and dry (DFD) condition of beef on growth of the foodborne pathogens Escherichia coli O157:H7, Salmonella Typhimurium DT104, and Listeria monocytogenes Scott A in ground beef. Longissimus muscles from a DFD carcass (pH = 6.45) and normal carcass (N; pH = 5.64) were ground and samples obtained (100 and 0% DFD, respectively). Equal amounts of the 0 and 100% DFD ground samples were mixed to obtain 50% DFD samples. Inoculated 0, 50, and 100% DFD samples were packaged into oxygen-permeable overwrap and stored at 10°C for E. coli O157:H7, Salmonella Typhimurium DT104, and L. monocytogenes Scott A or at 22°C for E. coli O157:H7. Growth characteristics of E. coli O157:H7, Salmonella Typhimurium DT104, and L. monocytogenes Scott A did not differ (P > 0.05) between 0 and 100% DFD. Results indicated that the DFD beef used in this study was no more susceptible to growth of E. coli O157:H7, Salmonella Typhimurium, or L. monocytogenes Scott A than N beef.


2000 ◽  
Vol 63 (7) ◽  
pp. 894-899 ◽  
Author(s):  
ELAINE M. D'SA ◽  
MARK A. HARRISON ◽  
SCOTT E. WILLIAMS ◽  
MARC H. BROCCOLI

A rapid, high-temperature double-sided grilling–broiling (DGB) system was compared to a single-sided broiling (SSB) system for cooking of foodservice ground beef patties to reduce microbial numbers and maintain textural quality. Patties (110g) containing either Escherichia coli O157:H7 or Listeria monocytogenes (106–7 CFU/g) were cooked to target internal temperatures of 60 or 68°C on each cooking system and immediately removed from the grills without the additional holding time at 60 or 68°C that is recommended for foodservice cooking of ground beef patties. Actual final internal temperature attained, position on the grill, degree of doneness, cooking time, after-cook weight, texture characteristics, and bacterial counts of the patties were monitored. The DGB reduced E. coli O157:H7 and L. monocytogenes populations in ground beef patties by 5.7 log10 and 5.4 log10 CFU/g, respectively, when cooked to a target temperature of 60°C (actual final internal temperature of 71.2°C) and by 6.1 log10 and 5.6 log10 CFU/g, respectively, when cooked to a target temperature of 68°C (actual final internal temperature of 75.8°C). The SSB reduced E. coli O157:H7 and L. monocytogenes populations by 1.3 log10 and 1.8 log10 CFU/g, respectively, when cooked to a target temperature of 60°C (actual final internal temperature of 62.7°C) and by 2.9 log10 and 3.6 log10 CFU/g, respectively, when cooked to a target temperature of 68°C (actual final internal temperature of 69.3°C). The DGB system effected a higher, more rapid temperature increase in patties cooked to either target temperature compared to the SSB system. This higher temperature was more effective in destroying pathogens in beef patties. Texture analyses determined that patties cooked on the DGB system had significantly higher values for springiness, adhesiveness, and product height as compared to the SSB system, and patties cooked on either system had significantly higher hardness, gumminess, chewiness, and product height values at the target temperature of 68°C as compared to 60°C.


2004 ◽  
Vol 67 (7) ◽  
pp. 1394-1402 ◽  
Author(s):  
R. Y. MURPHY ◽  
E. M. MARTIN ◽  
L. K. DUNCAN ◽  
B. L. BEARD ◽  
J. A. MARCY

At 55 to 70°C, thermal inactivation D-values for Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes were 19.05 to 0.038, 43.10 to 0.096, and 33.11 to 0.12 min, respectively, in ground turkey and 21.55 to 0.055, 37.04 to 0.066, and 36.90 to 0.063 min, respectively, in ground beef. The z-values were 5.73, 5.54, and 6.13°C, respectively, in ground turkey and 5.43, 5.74, and 6.01°C, respectively, in ground beef. In both ground turkey and beef, significant (P < 0.05) differences were found in the D-values between E. coli O157:H7 and Salmonella or between E. coli O157:H7 and L. monocytogenes. At 65 to 70°C, D-values for E. coli O157:H7, Salmonella, and L. monocytogenes were also significantly (P < 0.05) different between turkey and beef. The obtained D- and z-values were used in predicting process lethality of the pathogens in ground turkey and beef patties cooked in an air impingement oven and confirmed by inoculation studies for a 7-log (CFU/g) reduction of E. coli O157:H7, Salmonella, and L. monocytogenes.


2015 ◽  
Vol 78 (2) ◽  
pp. 323-332 ◽  
Author(s):  
PARDEEPINDER K. BRAR ◽  
LISSETH G. PROANO ◽  
LORETTA M. FRIEDRICH ◽  
LINDA J. HARRIS ◽  
MICHELLE D. DANYLUK

Cocktails of lawn-collected cells were used to determine the survival of Salmonella, Escherichia coli O157:H7, and Listeria monocytogenes on the surface of raw peanut and pecan kernels. Kernels were inoculated with mixtures of four to five strains at 3 or 6 log CFU/g, dried at room temperature, and then stored at −24 ± 1, 4 ± 2, and 22 ± 1°C for 28 or 365 days. In most cases, rates of decline of the pathogens did not differ significantly between the two inoculum concentrations in the 28-day study. At 6 log CFU/g, populations of all pathogens were reduced by 0.5 to 1.6 log CFU/g during an initial 3-day drying period on both peanuts and pecans. The moisture content of peanuts and pecans remained stable at −24 ± 1 and 22 ± 1°C; at 4 ± 2°C, the moisture content increased from 3.8 to 5.6% on peanuts and from 2.6 to 3% on pecans over 365 days. Pathogen populations were stable on pecans stored under frozen and refrigerated conditions, except for L. monocytogenes, which declined at a rate of 0.03 log CFU/g/30 days at 4 ± 2°C. Salmonella populations were stable on peanuts stored at −24 ± 1 and 4 ± 2°C, but E. coli O157:H7 and L. monocytogenes declined at rates of 0.03 to 0.12 log CFU/g/30 days. At 22 ± 1°C, Salmonella, E. coli O157:H7, and L. monocytogenes declined at a rate of 0.22, 0.37, and 0.59 log CFU/g/30 days, respectively, on peanuts, and at 0.15, 0.34, and 1.17 log CFU/g/30 days, respectively, on pecans. Salmonella counts were above the limit of detection (0.30 log CFU/g) throughout the study. In most cases during storage, counts obtained from pecans were higher than from peanuts.


Sign in / Sign up

Export Citation Format

Share Document