Antimicrobial Potential of Immobilized Lactococcus lactis subsp. lactis ATCC 11454 against Selected Bacteria

2004 ◽  
Vol 67 (6) ◽  
pp. 1184-1189 ◽  
Author(s):  
M. MILLETTE ◽  
W. SMORAGIEWICZ ◽  
M. LACROIX

Immobilization of living cells of lactic acid bacteria could be an alternative or complementary method of immobilizing organic acids and bacteriocins and inhibit undesirable bacteria in foods. This study evaluated the inhibition potential of immobilized Lactococcus lactis subsp. lactis ATCC 11454 on selected bacteria by a modified method of the agar spot test. L. lactis was immobilized in calcium alginate (1 to 2%)–whey protein concentrate (0 and 1%) beads. The antimicrobial potential of immobilized L. lactis was evaluated in microbiological media against pathogenic bacteria ( Escherichia coli, Salmonella, and Staphylococcus aureus) or Pseudomonas putida, a natural meat contaminant, and against seven gram-positive bacteria used as indicator strains. Results obtained in this study indicated that immobilized L. lactis inhibited the growth of S. aureus, Enterococcus faecalis, Enterococcus faecium, Lactobacillus curvatus, Lactobacillus sakei, Kocuria varians, and Pediococcus acidilactici. Only 4 h of incubation at 35°C resulted in a clear inhibition zone around the beads that increased with time. With the addition of 10 mM of a chelating agent (EDTA) to the media, results showed growth inhibition of E. coli; however, P. putida and Salmonella Typhi were unaffected by this treatment. These results indicate that immobilized lactic acid bacteria strains can be successfully used to produce nisin and inhibit bacterial growth in semisolid synthetic media.

2014 ◽  
Vol 66 (1) ◽  
pp. 179-192 ◽  
Author(s):  
Amarela Terzic-Vidojevic ◽  
Sanja Mihajlovic ◽  
Gordana Uzelac ◽  
Natasa Golic ◽  
Dj. Fira ◽  
...  

The aim of this study was to identify and characterize the lactic acid bacteria (LAB) of artisanal Golija raw and cooked cows? milk cheeses traditionally manufactured without the addition of starter culture. A total of 188 Gram-positive and catalase-negative isolates of Golija cheeses were obtained from seven samples of different ripening time. Phenotypebased assays as well as rep-PCR and 16S rDNA sequence analysis were undertaken for all 188 Lstrains. The most diverse species were isolated from 20-day-old BGGO8 cheese (Lactobacillus fermentum, Lactobacillus plantarum, Lactobacillus casei/paracasei, Lactobacillus sucicola, Lactococcus lactis subsp. lactis, Lactococcus lactis subsp. lactis bv. diacetylactis, Enterococcus faecium, Enterococcus durans and Leuconostoc mesenteroides). In other Golija cheeses Lactobacillus reuteri, Lactobacillus curvatus, Lactobacillus rhamnosus, Lactococcus lactis subsp. cremoris, Lactococcus garvieae, Streptococcus thermophilus and Leuconostoc pseudomesenteroides were found. Pronounced antimicrobial properties showed enterococci (13/42) and lactococci (12/31), while the good proteolytic activity demonstrated lactococci (13/31) and lactobacilli (10/29).


2015 ◽  
Vol 1 (2) ◽  
pp. 126
Author(s):  
Urnemi ◽  
Sumaryati Syukur ◽  
Endang Purwati ◽  
Sanusi Ibrahim ◽  
Jamsari

ABSTRACT Lactic acid bacteria (LAB) were isolated from of cocoa beans fermentation Forestero variety from West Sumatera, that were eleven isolates. The isolates were tested to antimicrobial activity against pathogenic bacteria E.coli NBRC 14237, Staphylococcus aureus NBRC 13276, Bacillus subtilis BTCCB 612, listeria m. dan S. Typhii. Results the research showed that, isolates had inhibition zone to pathogenic bacteria, that were 7 mm till 12 mm at 48 hours observation. R2.4 isolate was most potential to inhibition zones growth pathogenic bacteria, that was 11mm till 12 mm to five pathogens. R2.4 isolates was the highest to against pathogenic bacteria (Bacillus subtilis BTCCB, Listeria monocytogenesis and Staphylococcus aureus NBRC) had inhibition zones, that was 12.00 mm till 48 hours. Listeria monocytogenesis had been known as pest bacterium of food born, so that R2.4 isolate can be used as food biopreservative. Crude of R2.4 isolate molecular weight was 10 kDa by SDS-PAGE.  Key words: Lactic acid bacteria, Antimicrobial activity, SDS-PAGE, Cocoa fermentation and food biopreservative                                                      


2019 ◽  
Vol 886 ◽  
pp. 56-60
Author(s):  
Suttida Wittanalai ◽  
Keerati Tanruean ◽  
Phanida Mapoong

Four samples of Nham Hed which fermented from different carbon sources; Homnil rice (HN), sticky rice (SR), LeumPua rice (LP) and rice berry (RB) were evaluated for total viable count of lactic acid bacteria (LAB). The rice berry Nham Hed samples showed the highest of total lactic bacteria count with values 2.83 x 105 cfu/g. The thirty one distinct colonies of LAB were isolated and categorized into 6 groups on the basis of their colony characteristics on MRS agar, microscopic morphology and biochemical characteristic. These 6 isolates were screened for their antimicrobial activity against 2 strains of coliform bacteria and it was found that LAB isolate E exhibited the highest antimicrobial activity against Escherichia coli and Enterobacter sp. which the zone of inhibition zone 14.22 ± 1.50 mm and 13.38 ± 1.25 mm, respectively. According to the morphology characterization, isolate E was probably classified to Weissella spp. These obtained results revealed the possibility for further characterization and purification the antimicrobial compound produced by the studied isolate as food bio preservatives to control food spoilage and pathogenic bacteria.


1991 ◽  
Vol 54 (3) ◽  
pp. 183-188 ◽  
Author(s):  
JANE M. WENZEL ◽  
ELMER H. MARTH

An agitated medium with internal pH control (IPCM-2) was inoculated to contain Listeria monocytogenes (strain V7, Scott A or California) at ca. 103 CFU/ml and Streptococcus cremoris (Lactococcus lactis subsp. cremoris) or Streptococcus lactis (Lactococcus lactis subsp. lactis) at 0.25 or 1.0% The inoculated medium was incubated with shaking in a waterbath at 30°C for 30 h. L. monocytogenes and lactic acid bacteria were enumerated and pH was determined at appropriate intervals. The area on a figure between curves for the control and treatment and designated as the area of inhibition (AI) was calculated and used to quantify inhibition of each strain of L. monocytogenes for a particular set of conditions in IPCM-2. Statistical analysis of AI values calculated from data obtained at 6, 24, and 30 h of incubation revealed no significant (p < 0.05) difference in inhibition among the three strains of L. monocytogenes for each type of lactic streptococcus present. Streptococcus cremoris was significantly (0.01 < p < 0.05) more inhibitory to all three strains of L. monocytogenes than was S. lactis at 24 and 30 h of incubation. IPCM-2 is considered ready for use at a pH of 5.4 or less, which was reached between 12 and 15 h of incubation in samples containing 0.25 or 1.0% S. cremoris. Populations of L. monocytogenes in such samples were ca. 104 to 106 CFU/ml regardless of strain of Listeria or percentage of S. cremoris added as inoculum. In samples initially containing 0.25 or 1.0% S. lactis, pH 5.4 was not reached until after 18–24 h of incubation. At this point all three strains of L. monocytogenes had grown to ca. 105 CFU/ml regardless of percentage of S. lactis added as inoculum. Despite the inhibition seen, substantial numbers of the pathogen were present when the medium was ready for use.


2005 ◽  
Vol 29 (2) ◽  
pp. 49-55
Author(s):  
Ali H. A . Hamid

This study aimed to detect metabolites inhibition activity for three therapeuticLactic acid bacteria Lactobacillus acidophilus (Lb. acid.) , Lactobacillus reuteri(Lb. reut.) and Bifidobacterium ssp. (Bif.) which were grown in whole milk andMan Reqosa and Sharp (MRS) broth as single or double (Lb. acid. + Bif.) ormixed (Lb. reut + Bif. + Lb. acid) culture Cell Free Extract (CFE) of theseculture which contained their metabolites of Lactic acid bacteria (exclusion Lb.reut.) showed good inhibition against four species of pathogenic Escherichiacoli ; Salmonella typhimurium ; Proteus volgaris and Staphylococcus aureus.inhibition activity against E. coli culture showed that 72 hours was the bestincubation time for Lactic acid bacteria to produce more metabolite with bestinhibition activity. Metabolite (CFE) of Lb. Acid culture grown in milk andMRS broth showed the best inhibition activity against all of Gram Positive andGram negative test bacteria with over all inhibition zone diameter was 14.6 and15.3 mm for milk and MRS broth supernatant respectively and this activityremained for more than one week as inhibition zone diameter were 13.4 and14.5 mm for supernatant of milk and MRS respectively.


2021 ◽  
Vol 6 (1) ◽  
pp. 15
Author(s):  
Maria Hesty Febriana ◽  
Ekawati Purwijantiningsih ◽  
Pramana Yuda

Gatot is a traditional food from fermented cassava. Lactic acid bacteria (LAB) can be found in fermented cassava food, gatot. Lactic acid bacteria can produce an antimicrobial compound for inhibiting pathogen microorganism. The aim of this research were isolation and identification LAB from gatot and antimicrobial activity test against Bacillus cereus and Aspergillus flavus. Three isolates from raw gatot and three isolates from cooked gatot used in this research. Isolation of LAB was conducted using pour plate method, purification is conducted by streak plate method, the antimicrobial test was conducted by agar well diffusion and molecular identification was conducted by PCR colony method using LABFw and R16RDNA-1492bac primer. Lactic acid bacteria from cooked gatot identified as Enterococcus sp. FTBUAJY04, Enterococcus sp. FTBUAJY05, Enterococcus sp. FTBUAJY06, while LAB from raw gatot identified as Lactococcus lactis strain FTBUAJY01, Lactococcus lactis strain FTBUAJY02 dan Lactococcus lactis strain FTBUAJY03. The results obtained from the inhibition zone test showed that all isolates were able to inhibit the growth of B. cereus and A. flavus.  The greatest inhibition zone against B. cereus was shown by LAB Gt5 supernatant or L. lactis supernatant strain FTBUAJY02 of 1.87 ± 0.67 cm2, while the results of the greatest inhibition zone against A. flavus was LAB Gt6 supernatant or L. lactis supernatant strain FTBUAJY03 of 3.83 ± 0.73 cm2.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1448
Author(s):  
Marina Ivanovic ◽  
Nemanja Mirkovic ◽  
Milica Mirkovic ◽  
Jelena Miocinovic ◽  
Ana Radulovic ◽  
...  

Nowadays, consumers are interested in cheese produced without chemical additives or high-temperature treatments, among which, protective lactic acid bacteria (LAB) cultures could play a major role. In this study, the aims were to isolate, identify and characterize antilisterial LAB from traditionally produced cheese, and utilize suitable LAB in cheese production. Among 200 isolated LAB colonies, isolate PFMI565, with the strongest antilisterial activity, was identified as Enterococcus durans. E. durans PFMI565 was sensitive to clinically important antibiotics (erytromicin, tetracycline, kanamycin, penicillin, vancomycin) and had low acidifying activity in milk. E. durans PFMI565 and the previously isolated bacteriocin producer, Lactococcus lactis subsp. lactis BGBU1–4, were tested for their capability to control Listeria monocytogenes in experimentally contaminated ultrafiltered (UF) cheeses during 35 days of storage at 4 °C. The greatest reductions of L. monocytogenes numbers were achieved in UF cheese made with L. lactis subsp. lactis BGBU1–4 or with the combination of L. lactis subsp. lactis BGBU1–4 and E. durans PFMI565. This study underlines the potential application of E. durans PFMI565 and L. lactis subsp. lactis BGBU1–4 in bio-control of L. monocytogenes in UF cheese.


1995 ◽  
Vol 58 (3) ◽  
pp. 316-318 ◽  
Author(s):  
JOHN U. McGREGOR ◽  
SANDRA M. TRAYLOR ◽  
RONALD H. GOUGH ◽  
STEPHANIE HAZLETT ◽  
KENNY BIRD

The ability of lactic cultures to grow on Petrifilm™ SM plates was studied. Frozen yogurt mix was analyzed microbiologically by plating on TOE, LBS, M17 and Petrifilm™ SM. Plates were incubated aerobically in a Gas-Pak System and under a CO2 environment. Also, Lactobacillus bulgaricus, Streptococcus thermophilus, Lactococcus lactis subsp. diacetylactis, and Leuconostoc cremoris were isolated from yogurt and buttermilk samples for study. Isolated cultures were grown in nutrient broth and plated on Petrifilm™ SM and M17 agar. Plates were incubated aerobically and in a Gas-Pak system. Petrifilm™ SM plates performed as well or better than the M17 agar in assaying lactic growth with the exception of Streptococcus thermophilus culture in an aerobic environment. Petrifilm™ SM plates show promise as a method for enumerating viable lactic cultures if incubated in a reduced oxygen environment.


Sign in / Sign up

Export Citation Format

Share Document