Lethality of Chlorine, Chlorine Dioxide, and a Commercial Fruit and Vegetable Sanitizer to Vegetative Cells and Spores of Bacillus cereus and Spores of Bacillus thuringiensis

2004 ◽  
Vol 67 (8) ◽  
pp. 1702-1708 ◽  
Author(s):  
LARRY R. BEUCHAT ◽  
CHARLES A. PETTIGREW ◽  
MARIO E. TREMBLAY ◽  
BRIAN J. ROSELLE ◽  
ALAN J. SCOUTEN

Chlorine, ClO2, and a commercial raw fruit and vegetable sanitizer were evaluated for their effectiveness in killing vegetative cells and spores of Bacillus cereus and spores of Bacillus thuringiensis. The ultimate goal was to use one or both species as a potential surrogate(s) for Bacillus anthracis in studies that focus on determining the efficacy of sanitizers in killing the pathogen on food contact surfaces and foods. Treatment with alkaline (pH 10.5 to 11.0) ClO2 (200 μg/ml) produced by electrochemical technologies reduced populations of a five-strain mixture of vegetative cells and a five-strain mixture of spores of B. cereus by more than 5.4 and more than 6.4 log CFU/ml respectively, within 5 min. This finding compares with respective reductions of 4.5 and 1.8 log CFU/ml resulting from treatment with 200 μg/ml of chlorine. Treatment with a 1.5% acidified (pH 3.0) solution of Fit powder product was less effective, causing 2.5- and 0.4-log CFU/ml reductions in the number of B. cereus cells and spores, respectively. Treatment with alkaline ClO2 (85 μg/ml), acidified (pH 3.4) ClO2 (85 μg/ml), and a mixture of ClO2 (85 μg/ml) and Fit powder product (0.5%) (pH 3.5) caused reductions in vegetative cell/spore populations of more than 5.3/5.6, 5.3/5.7, and 5.3/6.0 log CFU/ml, respectively. Treatment of B. cereus and B. thuringiensis spores in a medium (3.4 mg/ml of organic and inorganic solids) in which cells had grown and produced spores with an equal volume of alkaline (pH 12.1) ClO2 (400 μg/ml) for 30 min reduced populations by 4.6 and 5.2 log CFU/ml, respectively, indicating high lethality in the presence of materials other than spores that would potentially react with and neutralize the sporicidal activity of ClO2

2006 ◽  
Vol 69 (11) ◽  
pp. 2621-2634 ◽  
Author(s):  
AUDREY C. KRESKE ◽  
JEE-HOON RYU ◽  
CHARLES A. PETTIGREW ◽  
LARRY R. BEUCHAT

Many factors that are not fully understood may influence the effectiveness of sanitizer treatments for eliminating pathogens and spoilage microorganisms in food or detergent residues or in biofilms on food contact surfaces. This study was done to determine the sensitivities of Pseudomonas cells and Bacillus cereus cells and spores suspended in a liquid dishwashing detergent and inoculated onto the surface of stainless steel to treatment with chlorine, chlorine dioxide, and a commercial produce sanitizer (Fit). Cells and spores were incubated in a liquid dishwashing detergent for 16 to 18 h before treatment with sanitizers. At 50 μg/ml, chlorine dioxide killed a significantly higher number of Pseudomonas cells (3.82 log CFU/ml) than did chlorine (a reduction of 1.34 log CFU/ml). Stainless steel coupons were spot inoculated with Pseudomonas cells and B. cereus cells and spores, with water and 5% horse serum as carriers. Chlorine was more effective than chlorine dioxide in killing cells and spores of B. cereus suspended in horse serum. B. cereus biofilm on stainless steel coupons that were treated with chlorine dioxide or chlorine at 200 μg/ml had total population reductions (vegetative cells plus spores) of ≥4.42 log CFU per coupon; the number of spores was reduced by ≥3.80 log CFU per coupon. Fit (0.5%) was ineffective for killing spot-inoculated B. cereus and B. cereus in biofilm, but treatment with mixtures of Fit and chlorine dioxide caused greater reductions than did treatment with chlorine dioxide alone. In contrast, when chlorine was combined with Fit, the lethality of chlorine was completely lost. This study provides information on the survival and sanitizer sensitivity of Pseudomonas and B. cereus in a liquid dishwashing detergent, on the surface of stainless steel, and in a biofilm. This information will be useful for developing more effective strategies for cleaning and sanitizing contact surfaces in food preparation and processing environments.


2005 ◽  
Vol 68 (12) ◽  
pp. 2614-2622 ◽  
Author(s):  
JEE-HOON RYU ◽  
LARRY R. BEUCHAT

Biofilm formation by Bacillus cereus 038-2 on stainless steel coupons, sporulation in the biofilm as affected by nutrient availability, temperature, and relative humidity, and the resistance of vegetative cells and spores in biofilm to sanitizers were investigated. Total counts in biofilm formed on coupons immersed in tryptic soy broth (TSB) at 12 and 22°C consisted of 99.94% of vegetative cells and 0.06% of spores. Coupons on which biofilm had formed were immersed in TSB or exposed to air with 100, 97, 93, or 85% relative humidity. Biofilm on coupons immersed in TSB at 12°C for an additional 6 days or 22°C for an additional 4 days contained 0.30 and 0.02% of spores, respectively, whereas biofilm exposed to air with 100 or 97% relative humidity at 22°C for 4 days contained 10 and 2.5% of spores, respectively. Sporulation did not occur in biofilm exposed to 93 or 85% relative humidity at 22°C. Treatment of biofilm on coupons that had been immersed in TSB at 22°C with chlorine (50 μg/ml), chlorine dioxide (50 μg/ml), and a peroxyacetic acid–based sanitizer (Tsunami 200, 40 μg/ml) for 5 min reduced total cell counts (vegetative cells plus spores) by 4.7, 3.0, and 3.8 log CFU per coupon, respectively; total cell counts in biofilm exposed to air with 100% relative humidity were reduced by 1.5, 2.4, and 1.1 log CFU per coupon, respectively, reflecting the presence of lower numbers of vegetative cells. Spores that survived treatment with chlorine dioxide had reduced resistance to heat. It is concluded that exposure of biofilm formed by B. cereus exposed to air at high relative humidity (≥97%) promotes the production of spores. Spores and, to a lesser extent, vegetative cells embedded in biofilm are protected against inactivation by sanitizers. Results provide new insights to developing strategies to achieve more effective sanitation programs to minimize risks associated with B. cereus in biofilm formed on food contact surfaces and on foods.


2015 ◽  
Vol 82 (1) ◽  
pp. 116-123 ◽  
Author(s):  
Jia Wei Yeap ◽  
Simran Kaur ◽  
Fangfei Lou ◽  
Erin DiCaprio ◽  
Mark Morgan ◽  
...  

ABSTRACTAcute gastroenteritis caused by human norovirus is a significant public health issue. Fresh produce and seafood are examples of high-risk foods associated with norovirus outbreaks. Food contact surfaces also have the potential to harbor noroviruses if exposed to fecal contamination, aerosolized vomitus, or infected food handlers. Currently, there is no effective measure to decontaminate norovirus on food contact surfaces. Chlorine dioxide (ClO2) gas is a strong oxidizer and is used as a decontaminating agent in food processing plants. The objective of this study was to determine the kinetics and mechanism of ClO2gas inactivation of a norovirus surrogate, murine norovirus 1 (MNV-1), on stainless steel (SS) coupons. MNV-1 was inoculated on SS coupons at the concentration of 107PFU/coupon. The samples were treated with ClO2gas at 1, 1.5, 2, 2.5, and 4 mg/liter for up to 5 min at 25°C and a relative humidity of 85%, and virus survival was determined by plaque assay. Treatment of the SS coupons with ClO2gas at 2 mg/liter for 5 min and 2.5 mg/liter for 2 min resulted in at least a 3-log reduction in MNV-1, while no infectious virus was recovered at a concentration of 4 mg/liter even within 1 min of treatment. Furthermore, it was found that the mechanism of ClO2gas inactivation included degradation of viral protein, disruption of viral structure, and degradation of viral genomic RNA. In conclusion, treatment with ClO2gas can serve as an effective method to inactivate a human norovirus surrogate on SS contact surfaces.


2006 ◽  
Vol 69 (8) ◽  
pp. 1892-1903 ◽  
Author(s):  
AUDREY C. KRESKE ◽  
JEE-HOON RYU ◽  
LARRY R. BEUCHAT

Chlorine (10 to 200 μg/ml), chlorine dioxide (10 to 200 μg/ml), and a peroxyacetic acid–based sanitizer (40 and 80 μg/ml) were evaluated for effectiveness in killing spores of Bacillus cereus and Bacillus thuringiensis in suspensions and on the surface of stainless steel and apples. Water and 5% horse serum were used as carriers for spore inoculum applied to the surface of stainless steel coupons, and 5% horse serum was used as a carrier for inoculum applied to apples. Inocula were dried on stainless steel for 5 h and on apples for 22 to 24 h before treating with sanitizers. At the concentrations of sanitizers tested, sensitivities of planktonic B. cereus and B. thuringiensis spores were similar. A portion of the spores surviving treatment with chlorine and, more markedly, chlorine dioxide had decreased tolerance to heat. Planktonic spores of both species were more sensitive to sanitizers than were spores on the surface of stainless steel or apples. At the same concentrations, chlorine was more effective than chlorine dioxide in killing spores in suspension and on stainless steel. The lethality of chlorine dioxide was markedly reduced when inoculum on stainless steel coupons was suspended in 5% horse serum as a carrier rather than water. Chlorine and chlorine dioxide at concentrations of 10 to 100 μg/ml were equally effective in killing spores on apples. Significant reductions of ≥3.8 to 4.5 log CFU per apple were achieved by treatment with 100 μg/ml of either of the two sanitizers. The peroxyacetic acid sanitizer (40 and 80 μg/ml) was ineffective in killing Bacillus spores in the test systems investigated. Results provide information on the effectiveness of sanitizers commonly used in the food processing industry in killing Bacillus spores in suspension, on a food-contact surface, and on a ready-to-eat food.


2005 ◽  
Vol 68 (8) ◽  
pp. 1734-1738 ◽  
Author(s):  
JEE-HOON RYU ◽  
HOIKYUNG KIM ◽  
LARRY R. BEUCHAT

A study was done to determine the effect of interacting factors on sporulation of Bacillus cereus in broth. Vegetative cells (1.4 to 2.2 log CFU/ml) of B. cereus strain 038-2 (capable of growing at 12°C) and strain F3812/84 (capable of growing at 8°C) were inoculated into 30 ml of tryptic soy broth (TSB), TSB supplemented with manganese (50 μg/ml), diluted (10%) TSB (dTSB), and dTSB supplemented with manganese (50 μg/ml) and incubated at 8, 12, or 22°C for up to 30, 30, or 10 days, respectively. Unheated and heated (80°C for 10 min) cultures were plated on brain heart infusion agar to determine total cell counts (vegetative cells plus spores) and the number of spores produced, respectively. Both strains of B. cereus survived in TSB and dTSB for 30 days at 8°C but did not sporulate. At 12°C, cells grew in TSB to a population of 6.0 ± 0.8 log CFU/ml, which was maintained for 30 days. Neither strain grew in dTSB at 12°C and survived for at least 30 days. Spores were not produced in any of the test broths at 12°C. At 22°C, cells reached a stationary growth phase between 12 and 24 h in TSB, TSB supplemented with manganese, and dTSB supplemented with manganese, and approximately 1% of the CFU were spores. In dTSB, cell growth and spore formation were retarded at 22°C and a significantly lower number of spores was produced compared with the number of spores produced in TSB, TSB supplemented with manganese, and dTSB supplemented with manganese. The addition of manganese to TSB did not affect cell growth or spore formation, but manganese did enhance sporulation in dTSB. This study provides useful information on spore formation by B. cereus as affected by conditions that may be imposed in liquid milieus on the surface of foods and on food contact surfaces in processing environments.


2018 ◽  
Vol 28 (2) ◽  
pp. 581-590 ◽  
Author(s):  
Hyochin Kim ◽  
Min Ji Moon ◽  
Choon Young Kim ◽  
Kyung Ryu

2009 ◽  
Vol 26 (8) ◽  
pp. 936-941 ◽  
Author(s):  
Loretta M. Friedrich ◽  
Renee Goodrich-Schneider ◽  
Mickey E. Parish ◽  
Michelle D. Danyluk

Sign in / Sign up

Export Citation Format

Share Document