Physical Adsorption of Aflatoxin B1 by Lactic Acid Bacteria and Saccharomyces cerevisiae: A Theoretical Model

2007 ◽  
Vol 70 (9) ◽  
pp. 2148-2154 ◽  
Author(s):  
DANTE J. BUENO ◽  
CÉSAR H. CASALE ◽  
ROMINA P. PIZZOLITTO ◽  
MARIO A. SALVANO ◽  
GUILLERMO OLIVER

The ability of lactic acid bacteria (LAB) and Saccharomyces cerevisiae to remove aflatoxin B1 (AFB1) from liquid medium was tested. The experimental results indicated that (i) AFB1 binding to microorganisms was a rapid process (no more than 1 min); (ii) this binding involved the formation of a reversible complex between the toxin and microorganism surface, without chemical modification of the toxin; (iii) the amount of AFB1 removed was both toxin- and bacteria concentration–dependent; and (iv) quantitatively similar results were obtained with viable and nonviable (heat-treated) bacteria. According to these details, a physical adsorption model is proposed for the binding of AFB1 to LAB and S. cerevisiae, considering that the binding (adsorption) and release (desorption) of AFB1 to and from the site on the surface of the microorganism took place (AFB1 + S ↔ S − AFB1). The model permits the estimation of two parameters: the number of binding sites per microorganism (M) and the reaction equilibrium constant (Keq) involved, both of which are useful for estimating the adsorption efficiency (M × Keq) of a particular microorganism. Application of the model to experimental data suggests that different microorganisms have similar Keq values and that the differences in toxin removal efficiency are mainly due to differences in M values. The most important application of the proposed model is the capacity to select the most efficient microorganism to remove AFB1. Furthermore, it allows us to know if a modification of the adsorption efficiency obtained by physical, chemical, or genetic treatments on the microorganism is a consequence of changes in M, Keq, or both.

Author(s):  
Dea Korcari ◽  
Giovanni Ricci ◽  
Claudia Capusoni ◽  
Maria Grazia Fortina

AbstractIn this work we explored the potential of several strains of Kazachstania unispora to be used as non-conventional yeasts in sourdough fermentation. Properties such as carbohydrate source utilization, tolerance to different environmental factors and the performance in fermentation were evaluated. The K. unispora strains are characterized by rather restricted substrate utilization: only glucose and fructose supported the growth of the strains. However, the growth in presence of fructose was higher compared to a Saccharomyces cerevisiae commercial strain. Moreover, the inability to ferment maltose can be considered a positive characteristic in sourdoughs, where the yeasts can form a nutritional mutualism with maltose-positive Lactic Acid Bacteria. Tolerance assays showed that K. unispora strains are adapted to a sourdough environment: they were able to grow in conditions of high osmolarity, high acidity and in presence of organic acids, ethanol and salt. Finally, the performance in fermentation was comparable with the S. cerevisiae commercial strain. Moreover, the growth was more efficient, which is an advantage in obtaining the biomass in an industrial scale. Our data show that K. unispora strains have positive properties that should be explored further in bakery sector. Graphic abstract


1999 ◽  
Vol 62 (12) ◽  
pp. 1416-1429 ◽  
Author(s):  
J. MIGUEL ROCHA ◽  
F. XAVIER MALCATA

Traditional manufacture of bread from maize has been noted to play important roles from both economic and social standpoints; however, enforcement of increasingly strict hygiene standards requires thorough knowledge of the adventitious microbiota of the departing dough. To this goal, sourdough as well as maize and rye flours from several geographic locations and in two different periods within the agricultural year were assayed for their microbiota in sequential steps of quantification and identification. More than 400 strains were isolated and taxonomic differentiation between them was via Biomerieux API galleries (375 of which were successfully identified) following preliminary biochemical and morphological screening. The dominant groups were yeasts and lactic acid bacteria (LAB). The most frequently isolated yeasts were Saccharomyces cerevisiae and Candida pelliculosa. The most frequently isolated LAB were (heterofermentative) Leuconostoc spp. and (homo-fermentative) Lactobacillus spp.; L. brevis, L. curvatus, and L. lactis ssp. lactis were the dominant species for the Lactobacillus genera; Lactococcus lactis ssp. lactis for lactococci; Enterococcus casseliflavus, E. durans, and E. faecium for enterococci; and Streptococcus constellantus and S. equinus for streptococci.


Author(s):  
Oluwatosin Charles Ayodeji ◽  
Afolabi Folake Titilayo ◽  
Abdulkadir Musliu ◽  
Fasiku Oluwafemi

Malting is an important industrial product with a huge market outlet. Sorghum grain carries a numerous and variable, microbial population that mainly consists of bacteria, yeasts, and filamentous fungi. Sorghum malt is heavily reliant on chemical control of moulds and coliforms. This research aimed at investigating ways of improving malt quality and safety, using starter cultures of lactic acid bacteria and yeast, during the steeping stage of malting. All the steep treatments contained a sizeable population of moulds, greater than 4logcfu/mL, at 0hrs of steeping. A 3Log decrease was recorded in the steep treatment containing only single culture of Lactobacillus plantarum All the steeping treatments achieved varying levels of anti-nutrient reduction. The Lactobacillus plantarum CLB8 steep reduced the phytate level by as much as 47% when compared to the phytate level in sorghum grain. The combined cultures of Lactobacillus plantarum CLB8 and Saccharomyces cerevisiaeCYT1 reduced the phytate content by as much as 40% when compared to the sorghum grain without treatment. When compared to the control steep, the Lactobacillus plantarum CLB8 steep improved the anti-nutrient degradation by 31%. The combined cultures of Lactobacillus plantarum CLB8 and Saccharomyces cerevisiae CYT1 reduced the phytate content by as much as 23% when compared with the control steep. The polyphenol content was reduced by about 46% in the Lactobacillus plantarum CLB8 steep and 29% in the combined cultures of Lactobacillus plantarum CLB8 and Saccharomyces cerevisiae CYT1 steep when compared to the polyphenol content in the whole sorghum grain. Only the Lactobacillus plantarum CLB8 steep had better polyphenol reduction than the control with a 9.6% reduction more than the control. It was concluded that lactic acid bacteria can be apply as a biological control organism in malting of grains. 


2018 ◽  
Vol 18 (3) ◽  
pp. 144-151 ◽  
Author(s):  
Diaa Attia Marrez ◽  
Eman Mohamed Shahy ◽  
Hoda Samir El-Sayed ◽  
Yousef Yasseen Sultan

2019 ◽  
Vol 56 (9) ◽  
pp. 3969-3979
Author(s):  
Fernanda Corrêa Leal Penido ◽  
Carmen de Oliveira Goulart ◽  
Yara Cristina Fidelis Galvão ◽  
Carolina Vasconcelos Teixeira ◽  
Roseane Batitucci Passos de Oliveira ◽  
...  

2019 ◽  
Vol 20 (7) ◽  
pp. 1659
Author(s):  
Katarzyna Pielech-Przybylska ◽  
Maria Balcerek ◽  
Grzegorz Ciepielowski ◽  
Barbara Pacholczyk-Sienicka ◽  
Łukasz Albrecht ◽  
...  

The qualitative and quantitative composition of volatile compounds in fermented distillery mash determines the quality of the obtained distillate of agricultural origin (i.e., raw spirit) and the effectiveness of further purification steps. Propan-2-ol (syn. isopropyl alcohol), due to its low boiling point, is difficult to remove by rectification. Therefore, its synthesis needs to be limited during fermentation by Saccharomyces cerevisiae yeast, while at the same time controlling the levels of acetaldehyde and acetic acid, which are likewise known to determine the quality of raw spirit. Lactic acid bacteria (LAB) are a common but undesirable contaminant in distillery mashes. They are responsible for the production of undesirable compounds, which can affect synthesis of propan-2-ol. Some bacteria strains are able to synthesize isopropyl alcohol. This study therefore set out to investigate whether LAB with S. cerevisiae yeast are responsible for conversion of acetone to propan-2-ol, as well as the effects of the amount of LAB inoculum and fermentation parameters (pH and temperature) on the content of isopropyl alcohol, acetaldehyde, lactic acid and acetic acid in fermented mashes. The results of NMR and comprehensive two-dimensional gas chromatography coupled with time of flight mass spectrometry (GC × GC-TOF MS) analysis confirmed the ability of the yeast and LAB strains to metabolize acetone via its reduction to isopropyl alcohol. Efficient fermentation of distillery mashes was observed in all tested mashes with an initial LAB count of 3.34–6.34 log cfu/mL, which had no significant effect on the ethanol content. However, changes were observed in the contents of by-products. Lowering the initial pH of the mashes to 4.5, without and with LAB (3.34–4.34 log cfu/mL), resulted in a decrease in propan-2-ol and a concomitant increase in acetaldehyde content, while a higher pH (5.0 and 5.5) increased the content of propan-2-ol and decreased acetaldehyde content. Higher temperature (35 °C) promoted propan-2-ol synthesis and also resulted in increased acetic acid content in the fermented mashes compared to the controls. Moreover, the acetic acid content rose with increases in the initial pH and the initial LAB count.


2020 ◽  
Vol 8 (2) ◽  
pp. 240 ◽  
Author(s):  
Belén Carbonetto ◽  
Thibault Nidelet ◽  
Stéphane Guezenec ◽  
Marc Perez ◽  
Diego Segond ◽  
...  

Sourdoughs harbor simple microbial communities usually composed of a few prevailing lactic acid bacteria species (LAB) and yeast species. However, yeast and LAB found in sourdough have been described as highly diverse. Even if LAB and yeast associations have been widely documented, the nature of the interactions between them has been poorly described. These interactions define the composition and structure of sourdough communities, and therefore, the characteristics of the final bread product. In this study, the nature of the interactions between strains of two commonly found sourdough yeast species, Kazachstania humilis and Saccharomyces cerevisiae, and lactic acid bacteria isolated from sourdoughs has been analyzed. Population density analysis showed no evidence of positive interactions, but instead revealed neutral or negative asymmetric interaction outcomes. When in coculture, the yeasts´ population size decreased in the presence of LAB regardless of the strain, while the LAB´s population size was rarely influenced by the presence of yeasts. However, a higher maltose depletion was shown in maltose-negative K. humilis and maltose-positive obligately heterofermentative LAB cocultures compared to monocultures. In addition, tested pairs of obligately heterofermentative LAB and K. humilis strains leavened dough as much as couples of LAB and S. cerevisiae strains, while K. humilis strains never leavened dough as much as S. cerevisiae when in monoculture. Taken together, our results demonstrate that even if higher fermentation levels with increased maltose depletion were detected for K. humilis and obligately heterofermentative LAB pairs, these interactions cannot be ecologically classified as positive, leading us to rethink the established hypothesis of coexistence by facilitation in sourdoughs.


Sign in / Sign up

Export Citation Format

Share Document