Hygiene Indicator Microorganisms for Selected Pathogens on Beef, Pork, and Poultry Meats in Belgium

2008 ◽  
Vol 71 (1) ◽  
pp. 35-45 ◽  
Author(s):  
Y. GHAFIR ◽  
B. CHINA ◽  
K. DIERICK ◽  
L. DE ZUTTER ◽  
G. DAUBE

Several bacterial indicators are used to evaluate hygiene during the meat slaughtering process. The objectives of this study were to assess the Belgian baseline data on hygienic indicators and the relationship between the indicators and zoonotic agents to establish hygiene indicator criteria for cattle, pig, and chicken carcasses and meat. The study used the results from the official Belgian surveillance plan from 2000 to 2003, which included the monitoring of Escherichia coli counts (ECC), Enterobacteriaceae counts (EC), aerobic colony counts (ACC), and Pseudomonas counts (PC). The sampling method was the wet and dry swabbing technique for cattle and pig carcasses and neck skin excision for broiler and layer chicken carcasses. The 75th and 95th percentiles of ECC were −0.20 and 0.95 log CFU/cm2 for cattle carcasses, 1.20 and 2.32 log CFU/cm2 for pig carcasses, and 4.05 and 5.24 log CFU/g for chicken carcasses. The ACC were 2.1- to 4.5-log higher than the ECC for cattle, pigs, and chickens. For cattle and pig carcasses, a significant correlation between ECC, EC, and ACC was found. ECC for pork and beef samples and EC in pig carcasses were significantly higher in samples contaminated with Salmonella. In poultry samples, ECC were in general higher for samples containing Salmonella or Campylobacter. Thus, E. coli may be considered as a good indicator for enteric zoonotic agents such as Salmonella for beef, pork, and poultry samples and for Campylobacter in poultry samples.

1986 ◽  
Vol 49 (12) ◽  
pp. 944-951 ◽  
Author(s):  
J. E. KENNEDY ◽  
C. I. WEI ◽  
J. L. OBLINGER

The distribution of coliphages in various foods and the relationship between the incidences of coliphages and bacterial indicators were investigated. A total of 120 food samples comprising twelve products and including fresh meats, shellfish, vegetables and processed meats, were analyzed for indigenous coliphages using Escherichia coli hosts C, C-3000 and B. Bacterial analyses included enumeration of E. coli, fecal coliforms and coliforms, as well as aerobic plate counts and Salmonella analyses. Coliphages were detected (≥10 PFU/100 g) in 56% of samples and eleven of twelve products. Coliphages, E. coli, fecal coliforms and coliforms were recovered at a level of at least 30 organisms per 100 g in 43, 43, 68 and 81% of samples, with overall mean recoveries of 13, 19, 93 and 4300 organisms/100 g, respectively. Highest and lowest recoveries of coliphages and E. coli were from fresh meats and vacuum-packaged processed meats, respectively. Significant nonparametric correlations between coliphages, E. coli, fecal coliforms and coliforms were found among all food samples.


2012 ◽  
Vol 10 (4) ◽  
pp. 549-556 ◽  
Author(s):  
Laura Alcalde ◽  
Montserrat Folch ◽  
Josefina C. Tapias

A wastewater treatment and reclamation facility in north-east Spain was monitored over 1 year to determine the occurrence and concentrations of different microbial indicators (Escherichia coli, fecal enterococci, somatic bacteriophages and spores of sulfite-reducing clostridia). The removal of the indicators and its relationships through the wastewater treatment and reclamation trains were evaluated. The results obtained show that the reclamation treatments evaluated present a different efficiency in indicator microorganisms' removal depending on the type of microorganism. The E. coli and enterococci present an average reduction slightly higher than the other indicators, followed by somatic bacteriophages and spores of sulfite-reducing clostridia. The Spearman's correlations indicate that it is not suitable to use any of the bacterial indicators evaluated to predict the content of virus or spores of sulfite-reducing clostridia. Therefore, in order to evaluate the microbiological risk of the reclaimed effluent use, it is necessary to monitor the three types of indicator microorganisms (bacteria, virus and protozoa).


2017 ◽  
Vol 37 (11) ◽  
pp. 1253-1260 ◽  
Author(s):  
Caroline Pissetti ◽  
Gabriela Orosco Werlang ◽  
Jalusa Deon Kich ◽  
Marisa Cardoso

ABSTRACT: The increasing antimicrobial resistance observed worldwide in bacteria isolated from human and animals is a matter of extreme concern and has led to the monitoring of antimicrobial resistance in pathogenic and commensal bacteria. The aim of this study was to evaluate the antimicrobial resistance profile of Escherichia coli isolated from pig carcasses and to assess the occurrence of relevant resistance genes. A total of 319 E. coli isolates were tested for antimicrobial susceptibility against different antimicrobial agents. Moreover, the presence of extended-spectrum β-lactamase (ESBL) and inducible ampC-β-lactamase producers was investigated. Eighteen multi-resistant strains were chosen for resistance gene detection and PFGE characterization. The study showed that resistance to antimicrobials is widespread in E. coli isolated from pig carcasses, since 86.2% of the strains were resistant to at least one antimicrobial and 71.5% displayed multi-resistance profiles. No ampC-producing isolates were detected and only one ESBL-producing E. coli was identified. Genes strA (n=15), floR (n=14), aac(3)IVa (n=13), tetB (n=13), sul2 (n=12), tetA (n=11), aph(3)Ia (n=8) and sul3 (n=5) were detected by PCR. PFGE analysis of these multi-resistant E. coli strains showed less than 80% similarity among them. We conclude that antimicrobial multi-resistant E. coli strains are common on pig carcasses and present highly diverse genotypes and resistance phenotypes and genotypes.


2021 ◽  
Author(s):  
Heesu Kim ◽  
Dong Gun Lee

Abstract Hydrogen peroxide (H2O2) is a debriding agent that damages the microbial structure and function by generating various reactive oxygen species (ROS). H2O2-produced hydroxyl radical (OH∙) also exert oxidative stress on microorganisms. The spread of antibiotic resistance in bacteria is a serious issue worldwide, and greater efforts are needed to identify and characterize novel antibacterial mechanisms to develop new treatment strategies. Therefore, this study aimed to clarify the relationship between H2O2 and Escherichia coli and to elucidate a novel antibacterial mechanism(s) of H2O2. Following H2O2 exposure, increased levels of 8-hydroxyldeoxyguanosine and malondialdehyde indicated that H2O2 accelerates oxidation of bacterial DNA and lipids in E. coli. As oxidative damage worsened, the SOS response was triggered. Cell division arrest and resulting filamentation were identified in cells, indicating that LexA was involved in DNA replication. It was also verified that RecA, a representative SOS gene, helps self-cleavage of LexA and acts as a bacterial caspase-like protein. Our findings also showed that dinF is essential to preserve E. coli from H2O2-induced ROS, and furthermore, demonstrated that H2O2-induced SOS response and SOS genes participate differently in guarding E. coli from oxidative stress. As an extreme SOS response is considered apoptosis-like death (ALD) in bacteria, additional experiments were performed to examine the characteristics of ALD. DNA fragmentation and membrane depolarization appeared in H2O2-treated cells, suggesting that H2O2 causes ALD in E. coli. In conclusion, our investigations revealed that ALD is a novel antibacterial mode of action(s) of H2O2 with important contributions from SOS genes.


2017 ◽  
Vol 80 (7) ◽  
pp. 1214-1221 ◽  
Author(s):  
Daniel L. Weller ◽  
Jasna Kovac ◽  
Sherry Roof ◽  
David J. Kent ◽  
Jeffrey I. Tokman ◽  
...  

ABSTRACT Although wildlife intrusion and untreated manure have been associated with microbial contamination of produce, relatively few studies have examined the survival of Escherichia coli on produce under field conditions following contamination (e.g., via splash from wildlife feces). This experimental study was performed to estimate the die-off rate of E. coli on preharvest lettuce following contamination with a fecal slurry. During August 2015, field-grown lettuce was inoculated via pipette with a fecal slurry that was spiked with a three-strain cocktail of rifampin-resistant nonpathogenic E. coli. Ten lettuce heads were harvested at each of 13 time points following inoculation (0, 2.5, 5, and 24 h after inoculation and every 24 h thereafter until day 10). The most probable number (MPN) of E. coli on each lettuce head was determined, and die-off rates were estimated. The relationship between sample time and the log MPN of E. coli per head was modeled using a segmented linear model. This model had a breakpoint at 106 h (95% confidence interval = 69, 142 h) after inoculation, with a daily decrease of 0.70 and 0.19 log MPN for 0 to 106 h and 106 to 240 h following inoculation, respectively. These findings are consistent with die-off rates obtained in similar studies that assessed E. coli survival on produce following irrigation. Overall, these findings provide die-off rates for E. coli on lettuce that can be used in future quantitative risk assessments.


1971 ◽  
Vol 123 (4) ◽  
pp. 501-505 ◽  
Author(s):  
J. W. Dale

1. The amino acid composition of the β-lactamase from E. coli (R-1818) was determined. 2. The R-1818 β-lactamase is inhibited by formaldehyde, hydroxylamine, sodium azide, iodoacetamide, iodine and sodium chloride. 3. The Km values for benzylpenicillin, ampicillin and oxacillin have been determined by using the R-factor enzyme from different host species. The same values were obtained, irrespective of the host bacterium. 4. The molecular weight of the enzyme was found to be 44600, and was the same for all host species. 5. The relationship of R-1818 and R-GN238 β-lactamases is discussed.


2020 ◽  
Vol 86 (14) ◽  
Author(s):  
Subhrajit Bhar ◽  
Tungadri Bose ◽  
Sharmila S. Mande

ABSTRACT Signal transduction systems are essential for microorganisms to respond to their ever-changing environment. They can be distinguished into one-component systems, two-component systems, and extracytoplasmic-function σ factors. Abundances of a few signal-transducing proteins, termed herein as sensory proteins (SPs), have previously been reported to be correlated with the genome size and ecological niche of certain Gram-positive bacteria. No such reports are available for Gram-negative bacteria. The current study attempts to investigate the relationship of the abundances of SPs to genome size in Escherichia coli, and the bacterial pathotypes or phylotypes. While the relationship between SP abundance and genome size could not be established, the sensory protein index (SPI), a new metric defined herein, was found to be correlated with E. coli virulence. In addition, significant association was observed among the distribution of SPs and E. coli pathotypes. Results indicate that such associations might be due to genomic rearrangements to best utilize the resources available in a given ecological niche. Overall, the study provides an in-depth analysis of the occurrence of different SPs among pathogenic and nonpathogenic E. coli strains. Possibilities of using the SPI as a marker for identifying pathogenic strains from among an organism complex are also discussed. IMPORTANCE Sensory proteins (SPs) act as sensors and actuators for a cell and participate in important mechanisms pertaining to bacterial survival, adaptation, and virulence. Therefore, bacterial species residing in similar ecological niches or those sharing common pathotypes are expected to exhibit similar SP signatures. We have investigated profiles of SPs in different species of Escherichia coli and present in this article the sensory protein index (SPI), a metric for quantifying the abundance and/or distribution of SPs across bacterial genomes, which could indicate the virulence potency of a bacterium. The SPI could find use in characterizing uncultured strains and bacterial complexes, as a biomarker for disease diagnostics, evaluating the effect of therapeutic interventions, assessing effects of ecological alterations, etc. Grouping the studied strains of E. coli on the basis of the frequency of occurrence of SPs in their genomes could potentially replicate the stratification of these strains on the basis of their phylotypes. In addition, E. coli strains belonging to the same pathotypes were also seen to share similar SP signatures. Furthermore, the SPI was seen to be an indicator of pathogenic potency of E. coli strains. The SPI metric is expected to be useful in the (pathogenic) characterization of hereto uncultured strains which are routinely sequenced in host microbiome analysis projects, or from among an ensemble of microbial organisms constituting a biospecimen. Thus, the possibilities of using the SPI as a biomarker for diagnosis of a disease or the outcome of a therapeutic intervention cannot be ruled out. Further, SPIs obtained from longitudinal ecological samples have the potential to serve as key indicators of environmental changes. Such changes in the environment are often detrimental to the resident biome and methods for timely detection of environmental changes hold huge socioeconomic benefits.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Chin How Lee ◽  
Jack S. H. Oon ◽  
Kun Cheng Lee ◽  
Maurice H. T. Ling

Escherichia coli is commonly found in intestine of human, and any changes in their adaptation or evolution may affect the human body. The relationship between E. coli and food additives is less studied as compared to antibiotics. E. coli within our human gut are consistently interacting with the food additives; thus, it is important to investigate this relationship. In this paper, we observed the evolution of E. coli cultured in different concentration of food additives (sodium chloride, benzoic acid, and monosodium glutamate), singly or in combination, over 70 passages. Adaptability over time was estimated by generation time and cell density at stationary phase. Polymerase chain reaction (PCR)/restriction fragments length polymorphism (RFLP) using 3 primers and restriction endonucleases, each was used to characterize adaptation/evolution at genomic level. The amplification and digestion profiles were tabulated and analyzed by Nei-Li dissimilarity index. Our results demonstrate that E. coli in every treatment had adapted over 465 generations. The types of stress were discovered to be different even though different concentrations of same additives were used. However, RFLP shows a convergence of genetic distances, suggesting the presence of global stress response. In addition, monosodium glutamate may be a nutrient source and support acid resistance in E. coli.


2014 ◽  
Vol 14 (6) ◽  
pp. 1087-1094 ◽  
Author(s):  
Luis Sanchez ◽  
Lucas Guz ◽  
Pilar García ◽  
Silvia Ponce ◽  
Silvia Goyanes ◽  
...  

ZnO nanorods (ZnO NRs) were grown on ZnO seeded fluorine doped tin oxide (FTO) substrates at low temperatures (90 °C) from Zn2+ precursors in alkaline aqueous solution. The ZnO seeds were deposited on the FTO substrate heated at 350 °C by spray pyrolysis of a zinc acetate solution in a water ethanol mixture. The structure of seeds was tuned by the ethanol water ratio, Γ, which controls the solvent evaporation rate of drops impinging the substrate. The relationship between the microstructure and optical properties of the ZnO NR films and the photocatalytic antibacterial activity for Escherichia coli abatement, was determined through a detailed characterization of the material. The higher photocatalytic antibacterial activity was performed by ZnO NR films grown on seeds deposited from solutions with Γ in the 0.0–0.03 range. With these films, the population of viable E. coli dropped more than six orders, from 8 × 108 to 4 × 102 CFU. These results show the potential of these materials in water disinfection.


2003 ◽  
Vol 185 (17) ◽  
pp. 5324-5327 ◽  
Author(s):  
Annie Conter

ABSTRACT The relationship between the survival of Escherichia coli during long-term starvation in rich medium and the supercoiling of a reporter plasmid (pBR322) has been studied. In aerated continuously shaken cultures, E. coli lost the ability to form colonies earlier in rich NaCl-free Luria-Bertani medium than in NaCl-containing medium, and the negative supercoiling of plasmid pBR322 declined more rapidly in the absence of NaCl. Addition of NaCl at the 24th hour restored both viability and negative supercoiling in proportion to the concentration of added NaCl. Addition of ofloxacin, a quinolone inhibitor of gyrase, abolished rescue by added NaCl in proportion to the ofloxacin added. This observation raises the possibility that cells had the ability to recover plasmid supercoiling even if nutrients were not available and could survive during long-term starvation in a manner linked, at least in part, to the topological state of DNA and gyrase activity.


Sign in / Sign up

Export Citation Format

Share Document