Evaluation of U.S. Food and Drug Administration Enteric Viruses Microarray for Detection of Hepatitis A Virus and Norovirus in Inoculated Tomatoes, Green Onions, and Celery

2020 ◽  
Vol 83 (9) ◽  
pp. 1576-1583
Author(s):  
CHRISTINE YU ◽  
KAORU HIDA ◽  
EFSTATHIA PAPAFRAGKOU ◽  
MICHAEL KULKA

ABSTRACT Foodborne viral contamination of fresh produce has been associated with numerous outbreaks. Detection of such contaminated foods is important in protecting public health. Here, we demonstrate for the first time the capability of the U.S. Food and Drug Administration Enteric Viruses tiling microarray (FDA-EVIR) to perform rapid molecular identification of hepatitis A virus (HAV) and human norovirus extracted from artificially inoculated fresh produce. Two published viral extraction strategies, total RNA extraction or virus particle isolation, were used to prepare the viral targets. The total RNA extraction method was used on material eluted from tomatoes, using an alkaline Tris–glycine–beef extract (TGBE) buffer. Optimization procedures including DNase treatment and poly(A)-RNA enrichment were adopted to improve microarray sensitivity. For green onions or celery, material was eluted using either glycine buffer or TGBE buffer supplemented with pectinase, respectively, and then virus particles were concentrated by ultracentrifugation. We also assessed the amount of viral RNA extracted from celery using three commercially available kits and how well that RNA performed on FDA-EVIR. Our results confirm that FDA-EVIR can identify common enteric viruses isolated from fresh produce when present as either a single or mixed species of viruses. Using total RNA extraction from tomatoes yielded a limit of detection of 1.0 × 105 genome equivalents (ge) of HAV per array input. The limit of detection for viral RNA obtained using ultracentrifugation was 1.2 × 105 ge of HAV from green onions and 1.0 × 103 ge of norovirus from celery per array input. Extending microarray methods to other food matrices should provide important support to surveillance and outbreak investigations. HIGHLIGHTS

1991 ◽  
Vol 24 (2) ◽  
pp. 267-272 ◽  
Author(s):  
S. Dubrou ◽  
H. Kopecka ◽  
J. M. Lopez Pila ◽  
J. Maréchal ◽  
J. Prévot

Enteroviruses were specifically detected by dot blot hybridization when using poliovirus type 1 (PV1) derived subgenomic radiolabeled cRNA probes (riboprobes) in environmental water specimens and in the cell cultures in which the viruses were amplificated. The riboprobe corresponding to the 5' noncoding sequence detected the majority of enteroviruses. Hepatitis A virus (HAV) was specifically detected by an HAV cRNA probe corresponding to the 5' noncoding region of its genome. By this test, the limit of detection of coxsackievirus B5 and echovirus 7 seeded in mineral water was 103 to 104 PFU/spot. In cell cultures, positive signals were observed in the lysates of cells infected by one PFU. Higher positive signals were obtained with a short PV1 probe (nt 221-670) corresponding to the 5' noncoding region, which is a well preserved sequence among the enteroviruses, than with PV1 genomic probe. Hybridization allowed a good detection of enteroviral RNAs in wastewater specimens, but with a lower efficiency in surface water. In this case, amplification of viruses in the cell cultures gave significant hybridization results.


2000 ◽  
Vol 66 (8) ◽  
pp. 3241-3248 ◽  
Author(s):  
F. Le Guyader ◽  
L. Haugarreau ◽  
L. Miossec ◽  
E. Dubois ◽  
M. Pommepuy

ABSTRACT The main pathogenic enteric viruses able to persist in the environment, such as hepatitis A virus (HAV), Norwalk-like virus (NLV), enterovirus (EV), rotavirus (RV), and astrovirus (AV), were detected by reverse transcription-PCR and hybridization in shellfish during a 3-year study. Oyster samples (n = 108), occasionally containing bacteria, were less frequently contaminated, showing positivity for AV (17%), NLV (23%), EV (19%), and RV (27%), whereas mussel samples, collected in areas routinely impacted by human sewage, were more highly contaminated: AV (50%), HAV (13%), NLV (35%), EV (45%), and RV (52%). Sequences obtained from HAV and NLV amplicons showed a great variety of strains, especially for NLV (strains close to Mexico, Snow Mountain Agent, or Norwalk virus). Viral contamination was mainly observed during winter months, although there were some seasonal differences among the viruses. This first study of virus detection over a fairly long period of time suggests that routine analysis of shellfish by a molecular technique is feasible.


2020 ◽  
Vol 2020 (9) ◽  
pp. pdb.prot101683
Author(s):  
Michael R. Green ◽  
Joseph Sambrook

Author(s):  
JIAN-RONG GUO ◽  
KAMEL A. ABD-ELSALAM ◽  
FRANK SCHNIEDER ◽  
JOSEPH-ALEXANDER VERREET

1995 ◽  
Vol 31 (5-6) ◽  
pp. 189-193 ◽  
Author(s):  
Kathleen M. Callahan ◽  
Douglas J. Taylor ◽  
Mark D. Sobsey

The presence and persistence of enteric viruses in sewage contaminated seawater is an important public health concern for bathing, surfing and shellfishing. In an effort to find suitable indicators of enteric viruses in seawater, we compared the survival of two groups of enteric bacteriophages, F-specific coliphages (FRNA phages) and somatic Salmonella bacteriophages (SS phages), to the survival of two human enteric viruses, hepatitis A virus (HAV) and poliovirus type 1 (PV-1), in coastal seawater from three geographic areas (So. California, Hawaii, and North Carolina) at 20°C. Concentrations of all four viruses decreased over 30 days from their initial titers and there was little difference in the survival of a particular virus among the three seawaters. However, the extent of reduction varied among the four viruses. Survival was greater for the SS phages than for any of the other viruses, with an estimated 4 log10 reduction time of about 10 weeks. FRNA phages and PV-1 were inactivated rapidly, with 4 log10 reductions in ~ 1 week. HAV reductions were intermediate between SS phages and FRNA phages, with 4 log10 reductions in about 4 weeks. The observed differences in virus survival suggest that SS phages are more persistent in seawater than other viruses and hence may be good indicators for enteric viruses in seawater.


Author(s):  
Giovanna Fusco ◽  
Aniello Anastasio ◽  
David H. Kingsley ◽  
Maria Grazia Amoroso ◽  
Tiziana Pepe ◽  
...  

To assess the quality of shellfish harvest areas, bivalve mollusk samples from three coastal areas of the Campania region in Southwest Italy were evaluated for viruses over a three-year period (2015–2017). Screening of 289 samples from shellfish farms and other locations by qPCR and RT-qPCR identified hepatitis A virus (HAV; 8.9%), norovirus GI (NoVGI; 10.8%) and GII (NoVGII; 39.7%), rotavirus (RV; 9.0%), astrovirus (AsV; 20.8%), sapovirus (SaV; 18.8%), aichivirus-1 (AiV-1; 5.6%), and adenovirus (AdV, 5.6%). Hepatitis E virus (HEV) was never detected. Sequence analysis identified HAV as genotype IA and AdV as type 41. This study demonstrates the presence of different enteric viruses within bivalve mollusks, highlighting the limitations of the current EU classification system for shellfish growing waters.


2002 ◽  
Vol 68 (8) ◽  
pp. 3914-3918 ◽  
Author(s):  
David H. Kingsley ◽  
Gloria K. Meade ◽  
Gary P. Richards

ABSTRACT Hepatitis A virus (HAV) and Norwalk-like virus (NLV) were detected by reverse transcription-PCR in clams imported into the United States from China. An epidemiological investigation showed that these clams were associated with five cases of Norwalk-like gastroenteritis in New York State in August 2000 (Food and Drug Administration Import Alert 16-50). They were labeled “cooked” but appeared raw. Viral RNA extraction was performed by using dissected digestive tissues rather than whole shellfish meats; this was followed by glycine buffer elution, polyethylene glycol precipitation, Tri-Reagent treatment, and purification of poly(A) RNA with magnetic beads coupled to poly(dT) oligonucleotides. We identified HAV and NLV as genotype I and genogroup II strains, respectively. Both viruses have high levels of homology to Asian strains. An analysis of fecal coliforms revealed a most-probable number of 93,000/100 g of clam meat, which is approximately 300-fold higher than the hygienic standard for shellfish meats.


2014 ◽  
Vol 17 (1) ◽  
pp. 50-54 ◽  
Author(s):  
Canwei Shu ◽  
Si Sun ◽  
Jieling Chen ◽  
Jianyi Chen ◽  
Erxun Zhou

Sign in / Sign up

Export Citation Format

Share Document