total rna extraction
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 13)

H-INDEX

9
(FIVE YEARS 2)

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260002
Author(s):  
María José Cárdenas Espinosa ◽  
Tabea Schmidgall ◽  
Georg Wagner ◽  
Uwe Kappelmeyer ◽  
Stephan Schreiber ◽  
...  

Bacterial degradation of xenobiotic compounds is an intense field of research already for decades. Lately, this research is complemented by downstream applications including Next Generation Sequencing (NGS), RT-PCR, qPCR, and RNA-seq. For most of these molecular applications, high-quality RNA is a fundamental necessity. However, during the degradation of aromatic substrates, phenolic or polyphenolic compounds such as polycatechols are formed and interact irreversibly with nucleic acids, making RNA extraction from these sources a major challenge. Therefore, we established a method for total RNA extraction from the aromatic degrading Pseudomonas capeferrum TDA1 based on RNAzol® RT, glycogen and a final cleaning step. It yields a high-quality RNA from cells grown on TDA1 and on phenol compared to standard assays conducted in the study. To our knowledge, this is the first report tackling the problem of polyphenolic compound interference with total RNA isolation in bacteria. It might be considered as a guideline to improve total RNA extraction from other bacterial species.


Plant Disease ◽  
2021 ◽  
Author(s):  
Ziad M Hasan ◽  
Nidà Mohammed Salem ◽  
Imad D. Ismail ◽  
Insaf Akel ◽  
Ahmad Y Ahmad

Tomato (Solanum lycopersicum L.) is an important vegetable crop worldwide. In spring and autumn 2017, virus-like symptoms were observed on greenhouse grown tomato plants in the east of Akkar plain (south of coastal region, Tartous governorate, Syria). These symptoms were: mild to severe mosaic on the apical leaves, brown necrosis on sepals, receptacle and flower’s cluster carrier, and severe symptoms of brown rugose and discoloration on fruit. During next growing seasons, disease spread was observed in most of Syrian coastal region with disease incidence ranged from 40% to 70% by 2020. Tomato brown rugose fruit virus (ToBRFV) was suspected as a main causal agent of the disease, especially since its first report in Jordan, a neighboring country (Salem et al. 2016), Palestine (Alkowni et al. 2019), Turkey (Fidan et al. 2019), Germany (Menzel et al. 2019), Italy (Panno et al. 2019), America (Camacho-Beltrán et al. 2019), Egypt (Amer and Mahmoud, 2020), and recently in Spain (Alfaro-Fernandez et al. 2021). In November and December 2020, seventy-one leaf samples from symptomatic plants (59 from Tartous and 12 from Lattakia governorates) and seven from asymptomatic ones (5 from Tartous and 2 from Lattakia) were collected and tested for the presence of ToBRFV by double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA), using ToBRFV-commercial kit (LOEWE® Biochemia, Germany) following the manufacturer’s instructions. Results showed, forty-three of symptomatic samples reacted positively (38 in Tartous and 5 in Lattakia) and none of asymptomatic ones. On the other hand, sap mechanical inoculation of 10 tomato cv. Mandaloun F1 (Enza Zaden, the Netherlands) plants using a positive tomato isolate gave systemic mosaic symptoms in all plants identical to those observed in the original plants in the field, after 13 days of inoculation, and necrotic local lesions on 10 plants of Nicotiana tabacum after 5 days, indicating the presence of a tobamovirus in general. ToBRFV infection was confirmed in all mechanically-inoculated plants by DAS-ELISA. Further tests were necessary to investigate ToBRFV presence, because of its serological relationships with another tobamoviruses. Six representative symptomatic samples (ELISA-positive) and two asymptomatic (ELISA-negative) samples were subjected to total RNA extraction using the SV-Total RNA Extraction kit (Promega, U.S.A.) following the manufacturer’s instructions. The samples were tested by two-step reverse transcription-polymerase chain reaction (RT-PCR) using species-specific primers and protocols for most common tomato-infecting viruses, including: tomato chlorosis virus and tomato infectious chlorosis virus (Dovas et al. 2002), pepino mosaic virus (PepMV) and tomato torrado virus (Wieczorek et al. 2013), alfalfa mosaic virus (Parrella et al. 2000), tomato spotted wilt virus (Salem et al. 2012) and a pair of primers: ToBRFV-F2 (5’-CATATCTCTCGACACCAGTAAAAGGACCCG-3’) and ToBRFV-R2 (5’-TCCGAGTATAGGAAGACTCTGGTTGGTC-3’) targeting a region of the RNA dependent RNA polymerase (RdRp), of the ToBRFV genome (KT383474; Salem et al. 2016). First-strand cDNA synthesis was carried out using Moloney murine leukemia virus reverse transcriptase (M-MLV RT; Promega) and random primer according to the manufacturer's protocol, then followed by PCR with the seven species-specific primers. Only ToBRFV was detected among all tested viruses in symptomatic samples (ELISA-positive), and none of the tested viruses was detected in the asymptomatic plants. To confirm the presence of ToBRFV, two selected RdRp-specific PCR amplicons (872 bp) were purified and ligated into pGEM T-Easy Vector (Promega), and three clones were sequenced (GenBank accession nos. MZ447794 to 96). BLASTn analysis showed that the nucleotide sequences are 99.77-100% identical and shared around 99% identity to RdRp of ToBRFV isolate (MT118666) from Turkey available in the GenBank. Accordingly, the presence of ToBRFV was confirmed by bioassays on indicator plants, DAS-ELISA, RT-PCR, and further sequencing. To our knowledge, this is the first report of ToBRFV infecting tomato in Syria, and this requires special emphasis for further investigations because of the virus severity, easy transmission ability and absent of commercial resistance varieties till now.


Author(s):  
Ahmad Asnawi MUS ◽  
Jualang Azlan GANSAU ◽  
Nor Azizun RUSDI

Phalaenopsis bellina is an attractive orchid due to its unique appearance and distinctive floral fragrance. Many past studies on this plant focused on the plant at the molecular level; however, this requires sufficient quantities of high-quality P. bellina RNA. RNA is more delicate to manipulate than DNA due to its structural instability and its vulnerability to various secondary metabolites, such as polyphenols and polysaccharides. Therefore, in this study, 4 RNA isolation methods, a modified phenol-chloroform method and 3 commercial kits (Vivantis, Novogene, and Analytik Jena) were used on the leaves and flowers of P. bellina for comparison. The yield and purity of the total RNA were determined using spectrophotometry. The results showed that the total RNA isolated using the modified phenol-chloroform method had the highest yield (1223.75±68.51 ng/µL) and purity compared to the 3 commercial kits, with an OD260/280 value of 2.07 and an OD260/230 value of 2.26, respectively. In particular, the isolated RNA did not show any detectable genomic DNA contamination or other impurities. The RNA isolated using the phenol-chloroform method was also evaluated by electrophoresis, reverse transcription, and PCR. The results indicated that the phenol-chloroform method appears to be superior for total RNA extraction. Thus, this developed method is proven to be suitable for the RNA extraction of plants rich in polysaccharides and polyphenols and is amenable for future molecular studies on P. bellina.


2020 ◽  
Vol 2020 (9) ◽  
pp. pdb.prot101683
Author(s):  
Michael R. Green ◽  
Joseph Sambrook

2020 ◽  
Vol 19 (5) ◽  
pp. 240-248
Author(s):  
Tomás Cabral de Sousa Tarcisio ◽  
Caroliny Pinto Rodrigues Any ◽  
Marques Ariadne ◽  
Gomes Moreira Felipe ◽  
Couto Avila Renata ◽  
...  

2020 ◽  
Vol 83 (9) ◽  
pp. 1576-1583
Author(s):  
CHRISTINE YU ◽  
KAORU HIDA ◽  
EFSTATHIA PAPAFRAGKOU ◽  
MICHAEL KULKA

ABSTRACT Foodborne viral contamination of fresh produce has been associated with numerous outbreaks. Detection of such contaminated foods is important in protecting public health. Here, we demonstrate for the first time the capability of the U.S. Food and Drug Administration Enteric Viruses tiling microarray (FDA-EVIR) to perform rapid molecular identification of hepatitis A virus (HAV) and human norovirus extracted from artificially inoculated fresh produce. Two published viral extraction strategies, total RNA extraction or virus particle isolation, were used to prepare the viral targets. The total RNA extraction method was used on material eluted from tomatoes, using an alkaline Tris–glycine–beef extract (TGBE) buffer. Optimization procedures including DNase treatment and poly(A)-RNA enrichment were adopted to improve microarray sensitivity. For green onions or celery, material was eluted using either glycine buffer or TGBE buffer supplemented with pectinase, respectively, and then virus particles were concentrated by ultracentrifugation. We also assessed the amount of viral RNA extracted from celery using three commercially available kits and how well that RNA performed on FDA-EVIR. Our results confirm that FDA-EVIR can identify common enteric viruses isolated from fresh produce when present as either a single or mixed species of viruses. Using total RNA extraction from tomatoes yielded a limit of detection of 1.0 × 105 genome equivalents (ge) of HAV per array input. The limit of detection for viral RNA obtained using ultracentrifugation was 1.2 × 105 ge of HAV from green onions and 1.0 × 103 ge of norovirus from celery per array input. Extending microarray methods to other food matrices should provide important support to surveillance and outbreak investigations. HIGHLIGHTS


Rodriguésia ◽  
2020 ◽  
Vol 71 ◽  
Author(s):  
Geisiane Alves Rocha ◽  
Vanessa Duarte Dias ◽  
Renato Carrer-Filho ◽  
Marcos Gomes da Cunha ◽  
Érico de Campos Dianese

Abstract Considering the lack of information on RNA extraction from arboreal species, specially from the Brazilian Cerrado, the aim of this study was to test RNA extraction methods for a wide variety of native plant species from this biome. The methods tested consisted of: (i) TRIzol® reagent, (ii) TRIzol® reagent with modifications, (iii) CTAB buffer, and (iv) Modified CTAB buffer, initially for leaf samples of Xylopia aromatica and Piper arboreum. Later the procedure with the best results was used to obtain purified RNA from 17 other native species. Based on A260/A280 absorbance ratio the Modified CTAB method was the best for total RNA extraction for those woody species. Ten out of eleven species tested through RT-PCR generated fragments of the expected size from the total RNA extracted by the selected method, confirming it as the best option to obtain high-quality RNA for molecular analyses and for use in the detection of viruses infecting these tree species.


Sign in / Sign up

Export Citation Format

Share Document