Characterization of microbial community in cold-chain hairtail fish by high-throughput sequencing technology

Author(s):  
Jiali Xing ◽  
Xiaorong Xu ◽  
Xiaohu Luo ◽  
Ruihang Zheng ◽  
Lingyan Mao ◽  
...  

Abstract: High-throughput sequencing was used to analyze the microbial communities in the muscle samples of hairtail fish to study their diversity and dynamic changes during cold-chain circulation. The results showed that the richness and diversity of the microbial community in hairtail fish had a transient decline in 0–24 h and decreased after the first rise during 24–216 h. The diversity and richness of bacteria in cold-chain hairtail fish reached the maximum at 168 h. The Shannon and Simpson diversity indices of the bacteria were 2.96 and 0.16, respectively, and their ACE and Chao1 richness indices were 254.84 and 155.10, respectively. In addition, the dominant bacteria were Proteobacteria in the phylum level, Gammaproteobacteria in the class level, Pseudomonadales in the order level, Pseudomonadaceae in the family level, and Pseudomonas in the genus level, and their relative abundance were 80.52%, 72.11%, 76.68%, 23.25%, and 53.50%, respectively. In this study, the structure of bacterial flora and the dominant bacteria in cold-chain hairtail fish were analyzed by high-throughput sequencing to provide a basis for exploring how to maintain the freshness of hairtail fish and for predicting the shelf-life of hairtail fish.

PLoS ONE ◽  
2012 ◽  
Vol 7 (10) ◽  
pp. e46953 ◽  
Author(s):  
Ian M. Carroll ◽  
Tamar Ringel-Kulka ◽  
Jennica P. Siddle ◽  
Todd R. Klaenhammer ◽  
Yehuda Ringel

2021 ◽  
Author(s):  
Qing Wang ◽  
Xiaoqing Xiang ◽  
PengFei Wu ◽  
Guoqiang Han

Abstract In this study, high-throughput sequencing (HTS) was used to compare and analyze the microbial diversity and variation law during the brewing process of xiaoqu Baijiu. The results showed that 34 phyla, 378 genera of bacteria and 4 phyla, 32 genera of fungi were detected. At the phylum level, Firmicutes, Proteobacteria, Bacteroidetes, Ascomycota and Bacteroidetes were the dominant groups. During the brewing process of xiaoqu Baijiu, the dominant bacteria were Weissella and unidentified Rickettsiales 2 days before brewing and Lactobacillus 3 days after brewing until the end of brewing. The dominant fungi were Rhizopus, Saccharomyces and Issatchenkia. The relative abundance of Rhizopus decreased with the extension of brewing time, while the relative abundance of Saccharomyces increased and became the dominant bacteria after the second day of brewing. This study revealed the diversity and variation of microbial community in the brewing process of xiaoqu Baijiu, and provide theoretical support and lay the foundation for future study on the contribution of microbial metabolism during brewing of xiaoqu Baijiu, thereby promote the development of xiaoqu baijiu industry.


Foods ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 312 ◽  
Author(s):  
Ruihang Zheng ◽  
Xiaorong Xu ◽  
Jiali Xing ◽  
Hai Cheng ◽  
Shufen Zhang ◽  
...  

Exploring the spoilage mechanism of Spanish mackerel is important to reduce the waste of Spanish mackerel and extend its shelf life. Cold chain logistics are commonly used to maintain the high quality and prolong the shelf life of aquatic products in circulation and storage. We assessed the sensory (body surface, odor, fish gills, fish elasticity, eyes, and overall assessment), chemical (total volatile base nitrogen (TVB-N), pH and 2-thiobarbituric acid (TBA)), and microbial characteristics (total viable counts (TVCs) and lactic acid bacteria) of Spanish mackerel combined with high-throughput sequencing at frequent intervals to determine their freshness and specific spoilage organisms (SSOs) during 0 °C cold chain logistics. Results showed that TVB-N, TBA, and TVCs correlated well (R2 > 0.90) with the sensory scores with prolonged circulation and storage time. The SSOs of Spanish mackerel were Proteobacteria in phylum and Pseudomonas in genus. The shelf life of mackerel under the 0 °C ice-stored cold chain system was approximately seven days, which is roughly three days longer compared with the traditional low-temperature storage method. These findings indicated that the freshness evaluation of Spanish mackerel in cold-chain circulation could be achieved by selecting appropriate chemical, microbial, and sensory indices. The study contributes to extend the shelf life of cold-chain Spanish mackerel by inhibiting the growth of dominant bacteria and provides a basis for the development of methods and tools to predict the shelf life of Spanish mackerel.


2021 ◽  
Vol 9 (3) ◽  
pp. 659
Author(s):  
Elias Asimakis ◽  
Panagiota Stathopoulou ◽  
Apostolis Sapounas ◽  
Kanjana Khaeso ◽  
Costas Batargias ◽  
...  

Various factors, including the insect host, diet, and surrounding ecosystem can shape the structure of the bacterial communities of insects. We have employed next generation, high-throughput sequencing of the 16S rRNA to characterize the bacteriome of wild Zeugodacus (Bactrocera) cucurbitae (Coquillett) flies from three regions of Bangladesh. The tested populations developed distinct bacterial communities with differences in bacterial composition, suggesting that geography has an impact on the fly bacteriome. The dominant bacteria belonged to the families Enterobacteriaceae, Dysgomonadaceae and Orbaceae, with the genera Dysgonomonas, Orbus and Citrobacter showing the highest relative abundance across populations. Network analysis indicated variable interactions between operational taxonomic units (OTUs), with cases of mutual exclusion and copresence. Certain bacterial genera with high relative abundance were also characterized by a high degree of interactions. Interestingly, genera with a low relative abundance like Shimwellia, Gilliamella, and Chishuiella were among those that showed abundant interactions, suggesting that they are also important components of the bacterial community. Such knowledge could help us identify ideal wild populations for domestication in the context of the sterile insect technique or similar biotechnological methods. Further characterization of this bacterial diversity with transcriptomic and metabolic approaches, could also reveal their specific role in Z. cucurbitae physiology.


2013 ◽  
Vol 5 (1) ◽  
pp. 21-25 ◽  
Author(s):  
Yue-Jian Hu ◽  
Qian Wang ◽  
Yun-Tao Jiang ◽  
Rui Ma ◽  
Wen-Wei Xia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document