scholarly journals An Electronically Tunable Transconductance Amplifier for Use in Auditory Prostheses

2015 ◽  
Vol 15 (4) ◽  
pp. 95-100 ◽  
Author(s):  
P. FARAGO ◽  
C. FARAGO ◽  
G. OLTEAN ◽  
S. HINTEA
2011 ◽  
Vol 20 (02) ◽  
pp. 185-206 ◽  
Author(s):  
WORAPONG TANGSRIRAT ◽  
TATTAYA PUKKALANUN ◽  
WANLOP SURAKAMPONTORN

A synthesis of analog current limiter (CL) building blocks based on a current differencing transconductance amplifier (CDTA) is proposed. The breakpoint and the slope of the resulting transfer characteristic obtained from the proposed CDTA-based CL are electronically programmable through the external bias currents. To demonstrate versatility of the proposed electronically tunable CLs, some nonlinear applications to programmable current-mode precision full-wave rectifiers and piecewise-linear function approximation generators are also presented. PSPICE simulation and experimental results confirm the effectiveness of the proposed circuits.


Author(s):  
Danupat Duangmalai ◽  
Peerawut Suwanjan

In this research contribution, the electronically tunable first-order universal filter employing a single voltage differencing differential input buffered amplifier (VD-DIBA) (constructed from two commercially available integrated circuit (IC): the operational transconductance amplifier, IC number LT1228, and the differential voltage input buffer, IC number AD830), one capacitor and two resistors. The features of the designed first order universal filter are as follows. Three voltage-mode first-order functions, low-pass (LP), all-pass (AP) and high-pass (HP) responses are given. The natural frequency (𝜔0) of the presented configuration can be electronically adjusted by setting the DC bias current. Moreover, the voltage gain of the LP and HP filters can be controllable. The phase responses of an AP configuration can be varied from 00 to −1800 and 1800 to 00. The power supply voltages were set at ±5 𝑉. Verification of the theoretically described performances of the introduced electronically tunable universal filter was proved by the PSpice simulation and experiment.


2020 ◽  
Vol 29 (12) ◽  
pp. 2050191
Author(s):  
İbrahim Ethem Saçu

A novel electronically adjustable square/triangular waveform generator has been introduced in this paper. The proposed circuit employs one active element, the multi-output current-controlled current conveyor transconductance amplifier, and one passive component grounded capacitor only. The resistorless realization of the presented generator provides a good advantage in terms of integrated circuit fabrication. In the offered circuit, the frequency and amplitude of the output square wave are electronically tunable by means of relevant bias currents. Additionally, the upper and lower threshold levels are electronically controllable by the respective bias current. On the contrary, electronically adjusting of the duty cycle of output waveform is possible via the external DC current. The generator circuit is simulated with TSMC 0.18[Formula: see text][Formula: see text]m technology parameters and SPICE. Moreover, the introduced circuit is implemented by using commercially available active devices and thus it is also verified experimentally.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1262
Author(s):  
Niranjan Raj ◽  
Sagar ◽  
Rajeev Kumar Ranjan ◽  
Bindu Priyadarshini ◽  
Nicu Bizon

This work presents a voltage mode scheme of a full-wave precision rectifier circuit using an analog building block differential voltage current conveyor transconductance amplifier (DVCCTA) including five NMOS transistors. The proposed design is essentially suited for low voltage and high-frequency input signals. The operation of the proposed rectifier design depends upon the region of operation of NMOS transistors. The output waveform of the presented rectifier design can be made electronically tunable by controlling the bias voltage. The functional correctness and verification of the presented design are performed using 0.25-µm TSMC technology under the supply voltage of ±1.5 V. The absence of a resistor leads to a minimal parasitic effect. To obtain further insight on the robustness of the circuit, a Monte Carlo simulation and corner analysis are also presented. The circuit is verified experimentally by incorporating a breadboard model with the help of commercially available ICs CA3080 (operational transconductance amplifier) and AD844AN (current feedback operational amplifier) and offers remarkable compliance with both theoretical and simulation outcomes. The presented design has been laid out on Cadence virtuoso, which consumes a chip area of 9044 µm2.


2021 ◽  
Vol 11 (3) ◽  
pp. 171-190
Author(s):  
Tapas Kumar Paul ◽  
Suvajit Roy ◽  
Radha Raman Pal

In this contribution, nine new Grounded Inductance Simulators (GISs) using a single Multiple-Output Current Controlled Current Conveyor Transconductance Amplifier (MO-CCCCTA) and one grounded capacitor are proposed. Among them, two are lossless types and seven are lossy types. The use of a single grounded capacitor makes the circuits suitable for fabrication. All the proposed circuits are electronically tunable through the bias currents of MO-CCCCTA. Furthermore, no component matching conditions are needed for realizing them. The designed circuits are verified through PSPICE simulator with ± 0.9 V power supply. The simulation results show that for all the proposed circuits: maximum operating frequencies are about 12 MHz, power dissipation is less than 0.784 mW, Total Harmonic Distortions (THDs) are under 8.09%, and maximum output voltage noise at 1 MHz frequency is 14.094 nV/√Hz. To exhibit the workability of the proposed circuits, they are used to design band-pass, low-pass filter, parallel RLC resonator, and parasitic inductance cancelator.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Hua-Pin Chen

The electronically tunable quadrature oscillator using a single multiple-output current controlled current differencing transconductance amplifier (MO-CCCDTA) and grounded passive components is presented. The proposed configuration uses a single MO-CCCDTA, two grounded capacitors and one grounded resistor. Two high-output impedance quadrature current signals and two quadrature voltage signals with 90° phase difference. The oscillation condition and oscillation frequency of the proposed quadrature oscillator are independently controllable. The use of only grounded passive components makes the proposed circuit ideal for integrated circuit implementation.


Sign in / Sign up

Export Citation Format

Share Document