scholarly journals Electronically Tunable Full Wave Precision Rectifier Using DVCCTAs

Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1262
Author(s):  
Niranjan Raj ◽  
Sagar ◽  
Rajeev Kumar Ranjan ◽  
Bindu Priyadarshini ◽  
Nicu Bizon

This work presents a voltage mode scheme of a full-wave precision rectifier circuit using an analog building block differential voltage current conveyor transconductance amplifier (DVCCTA) including five NMOS transistors. The proposed design is essentially suited for low voltage and high-frequency input signals. The operation of the proposed rectifier design depends upon the region of operation of NMOS transistors. The output waveform of the presented rectifier design can be made electronically tunable by controlling the bias voltage. The functional correctness and verification of the presented design are performed using 0.25-µm TSMC technology under the supply voltage of ±1.5 V. The absence of a resistor leads to a minimal parasitic effect. To obtain further insight on the robustness of the circuit, a Monte Carlo simulation and corner analysis are also presented. The circuit is verified experimentally by incorporating a breadboard model with the help of commercially available ICs CA3080 (operational transconductance amplifier) and AD844AN (current feedback operational amplifier) and offers remarkable compliance with both theoretical and simulation outcomes. The presented design has been laid out on Cadence virtuoso, which consumes a chip area of 9044 µm2.

2019 ◽  
Vol 23 (2) ◽  
Author(s):  
Avireni Srinivasulu ◽  
Syed Zahiruddin ◽  
Musala Sarada

Second Generation Current Controlled Conveyor (CCCII) based tunable Dual Output Sinusoidal Oscillator (MSO) is proposed. It consists of three CCCIIs, a resistor and two grounded capacitors. By tuning external DC bias current, the oscillator frequency and commencement of its oscillations are controlled electronically. The proposed circuit is verified using PSPICE simulator and also on laboratory breadboard using commercially available integrated circuits Current Feedback Operational Amplifier (AD844AN) and Operational Transconductance Amplifier (LM13600) at a supply rail voltage of ±6 V. Further its nonlinearities, sensitivities, performance characteristics are also verified. Comparison of the proposed topology with the ongoing methods are also undertaken. PSPICE simulation results are verified with a low supply voltage of ±1 V, temperature analysis, analysis by using Montecarlo method and finally Total Harmonic Distortion (THD) is also demonstrated.


ETRI Journal ◽  
2007 ◽  
Vol 29 (2) ◽  
pp. 212-218 ◽  
Author(s):  
Soliman A. Mahmoud ◽  
Ahmed H. Madian ◽  
Ahmed M. Soliman

2015 ◽  
Vol 645-646 ◽  
pp. 1308-1313
Author(s):  
Zhi Qiang Gao ◽  
Fu Xiang Huang ◽  
Jing Li ◽  
Liang Yin ◽  
Xiao Wei Liu

In this paper, a low-voltage automatic gain control (AGC) circuits is presented. The proposed circuit uses a novel approximated exponential function to increase the dB-linear output range. The three-stage AGC is fabricated in 0.18μm CMOS technology and shows the maximum gain variation of more than 100dB and a 67dB linear range with linearity error of less than ±1dB. The range of gain variation can be controlled from 34 to 101dB. The AGC dissipates less than 2.3mA under 1.8V supply voltage while occupying 0.4mm2 of chip area.


2020 ◽  
Vol 29 (15) ◽  
pp. 2050247 ◽  
Author(s):  
Hasan Sozen ◽  
Ugur Cam

Meminductor is a nonlinear two-terminal element with storage energy and memory ability. To date, meminductor element is not available commercially as memristor and memcapacitor are. Therefore, it is of great significance to implement a meminductor emulator for breadboard experiment. In this paper, a flux-controlled floating/grounded meminductor emulator without a memristor is presented. It is built with commercially available off-the-shelf electronic devices. It consists of single operational transconductance amplifier (OTA), single multiplier, two second-generation current conveyors (CCIIs), single current-feedback operational amplifier (CFOA) and single operational amplifier. Using OTA device introduces an additional control parameter besides frequency and amplitude values of applied voltage to control the area of pinched hysteresis loop of meminductor. Mathematical model of proposed emulator circuit is given to describe the behavior of meminductor circuit. The breadboard experiment is performed using CA3080, AD844, AD633J and LM741 for OTA, CCII–CFOA, multiplier and operational amplifier, respectively. Simulation and experimental test results are given to verify the theoretical analyses. Frequency-dependent pinched hysteresis loop is maintained up to 5 kHz. The presented meminductor emulator tends to work as ordinary inductor for higher frequencies.


2011 ◽  
Vol 20 (02) ◽  
pp. 185-206 ◽  
Author(s):  
WORAPONG TANGSRIRAT ◽  
TATTAYA PUKKALANUN ◽  
WANLOP SURAKAMPONTORN

A synthesis of analog current limiter (CL) building blocks based on a current differencing transconductance amplifier (CDTA) is proposed. The breakpoint and the slope of the resulting transfer characteristic obtained from the proposed CDTA-based CL are electronically programmable through the external bias currents. To demonstrate versatility of the proposed electronically tunable CLs, some nonlinear applications to programmable current-mode precision full-wave rectifiers and piecewise-linear function approximation generators are also presented. PSPICE simulation and experimental results confirm the effectiveness of the proposed circuits.


2021 ◽  
Author(s):  
Bendong Sun

This thesis deals with the design of a low-voltage fully-differential CMOS current-mode preamplifier for optical communications. An in-depth comparative analysis of the building blocks of low-voltage CMOS current-mode circuits is carried out. Two new bandwidth enhancement techniques, namely inductor series-peaking and current feedback, are introduced and implemented in the design. The feedback also reduces the value of the series-peaking inductor. The minimum supply voltage of the amplifier is only one threshold voltage plus one pinch-off voltage. The preamplifier has a balanced differential topology such that the effect of bias dependent mismatches is minimized and the amplifier is insensitive to the switching noise caused by the digital circuitry. Negative differential current feedbacks are implemented to boost the bandwidth and increase the dynamic range.


2002 ◽  
Vol 15 (3) ◽  
pp. 361-369
Author(s):  
Lyes Bouzerara ◽  
Mohand Belaroussi

A low voltage CMOS wideband operational Tran conductance amplifier (OTA) using regulated cascade structure with an active positive feedback frequency-dependent current mirrors and feed forward techniques, is presented and analyzed. Such techniques stand as a powerful method of gain bandwidth, output impedance and phase margin enhancements. In this paper, an efficient implementation of a high output impedance current mirror is used in the design of an OTA by means of the regulated cascade circuits. This amplifier operates at ?1.25 V power supply voltage, exhibits a voltage gain of 68 dB, and provides a gain bandwidth product of 166 MHz. It drives a capacitive load of 1.6 pF and gives a power dissipation of 8.5 mW. The predicted performance is verified by simulations using HSPICE tool with 0.35 /itm CMOS TSMC parameters.


2003 ◽  
Vol 26 (1) ◽  
pp. 31-36 ◽  
Author(s):  
Muhammad Taher Abuelma'atti ◽  
Sa'ad Muhammad Al-Shahrani

A novel circuit is presented for realizing a sinusoidal oscillator. The proposed circuit, developed through a true synthesis approach, uses one current-feedback operational amplifier (CFOA), one operational transconductance amplifier (OTA), three grounded capacitors and one floating resistor. The proposed circuit enjoys several attractive features. Practical results, in excellent agreement with the presented theory, are included.


2013 ◽  
Vol 22 (07) ◽  
pp. 1350053 ◽  
Author(s):  
S. REKHA ◽  
T. LAXMINIDHI

This paper presents an active-RC continuous time filter in 0.18 μm standard CMOS technology intended to operate on a very low supply voltage of 0.5 V. The filter designed, has a 5th order Chebyshev low pass response with a bandwidth of 477 kHz and 1-dB passband ripple. A low-power operational transconductance amplifier (OTA) is designed which makes the filter realizable. The OTA uses bulk-driven input transistors and feed-forward compensation in order to increase the Dynamic Range and Unity Gain Bandwidth, respectively. The paper also presents an equivalent circuit of the OTA and explains how the filter can be modeled using descriptor state-space equations which will be used for design centering the filter in the presence of parasitics. The designed filter offers a dynamic range of 51.3 dB while consuming a power of 237 μW.


Sign in / Sign up

Export Citation Format

Share Document