Microelectrode techniques for characterization of advanced materials for battery and sensor applications

Author(s):  
Matsuhiko Nishizawa ◽  
Isamu Uchida
2019 ◽  
Vol 474 ◽  
pp. 563-569 ◽  
Author(s):  
V. Manikandan ◽  
Florin Tudorache ◽  
Iulian Petrila ◽  
R.S. Mane ◽  
V. Kuncser ◽  
...  

Author(s):  
Mary Gopanchuk ◽  
Mohamed Arabi ◽  
N. Nelson-Fitzpatrick ◽  
Majed S. Al-Ghamdi ◽  
Eihab Abdel-Rahman ◽  
...  

This paper reports on the design, fabrication, and characterization of non-interdigitated comb drive actuators in Silicon-on-Insulator (SOI) wafers, using a single mask surface microma-chining process. The response of the actuator is analyzed numerically and experimentally. The results show at the fundamental frequency; it behaves as a longitudinal comb drive actuator. At a higher frequency, it exhibits a high-quality factor which is appropriate for sensor applications.


2013 ◽  
Vol 39 (5) ◽  
pp. 5321-5325 ◽  
Author(s):  
P. Kathirvel ◽  
J. Chandrasekaran ◽  
D. Manoharan ◽  
S. Kumar

Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3476 ◽  
Author(s):  
Jumana Abu-Khalaf ◽  
Razan Saraireh ◽  
Saleh Eisa ◽  
Ala’aldeen Al-Halhouli

This paper introduces a cost-effective method for the fabrication of stretchable circuits on polydimethylsiloxane (PDMS) using inkjet printing of silver nanoparticle ink. The fabrication method, presented here, allows for the development of fully stretchable and wearable sensors. Inkjet-printed sinusoidal and horseshoe patterns are experimentally characterized in terms of the effect of their geometry on stretchability, while maintaining adequate electrical conductivity. The optimal fabricated circuit, with a horseshoe pattern at an angle of 45°, is capable of undergoing an axial stretch up to a strain of 25% with a resistance under 800 Ω. The conductivity of the circuit is fully reversible once it is returned to its pre-stretching state. The circuit could also undergo up to 3000 stretching cycles without exhibiting a significant change in its conductivity. In addition, the successful development of a novel inkjet-printed fully stretchable and wearable version of the conventional pulse oximeter is demonstrated. Finally, the resulting sensor is evaluated in comparison to its commercially available counterpart.


Author(s):  
Tunc Icoz ◽  
Mehmet Arik ◽  
John T. Dardis

Thermal management of electronics is a critical part of maintaining high efficiency and reliability. Adequate cooling must be balanced with weight and volumetric requirements, especially for passive air-cooling solutions in electronics applications where space and weight are at a premium. It should be noted that there are systems where thermal solution takes more than 95% of the total weight of the system. Therefore, it is necessary to investigate and utilize advanced materials to design low weight and compact systems. Many of the advanced materials have anisotropic thermal properties and their performances depend strongly on taking advantage of superior properties in the desired directions. Therefore, control of thermal conductivity plays an important role in utilization of such materials for cooling applications. Because of the complexity introduced by anisotropic properties, thermal performances of advanced materials are yet to be fully understood. Present study is an experimental and computational study on characterization of thermal performances of advanced materials for heat sink applications. Numerical simulations and experiments are performed to characterize thermal performances of four different materials. An estimated weight savings in excess of 75% with lightweight materials are observed compared to the traditionally used heat sinks.


Sign in / Sign up

Export Citation Format

Share Document