Selection of a proper site for final disposal of radioactive waste

2022 ◽  
pp. 80-116
Author(s):  
Robert Rybski
2005 ◽  
Vol 196 (1-3) ◽  
pp. 63-68 ◽  
Author(s):  
Frédérico Garrido ◽  
Aurélie Gentils ◽  
Lionel Thomé

2019 ◽  
Vol 59 (6) ◽  
pp. 612-615
Author(s):  
V. A. Sokolov ◽  
M. D. Gasparyan ◽  
M. B. Remizov ◽  
P. V. Kozlov

Author(s):  
Jan Deckers ◽  
Rik Vanbrabant ◽  
Ronald Womack ◽  
Mark Shuey

Abstract Worldwide a great deal of the low and medium radioactive waste inventory is mixed with hazardous wastes and different non-combustibles. The path to treating these wastes historically has been to sort combustibles from non-combustibles and process them separately through incineration, supercompaction, cementation or other encapsulating technologies. Special attention has to be taken due to the presence of hazardous constituents. The cost and health physics exposure for sorting these types of mixed wastes and treating the separated streams in specialized infrastructure is not optimal and leaves a great potential for further optimization. After several years of development, a commercially available high temperature treatment system has been developed and installed that treats heterogeneous low-level radioactive waste. High temperature plasma processing and unique torch design and operating features make it feasible to achieve a volume reduced, permanent, high integrity waste form while eliminating the personnel exposure and cost associated with sorting, characterizing and handling. Plasma technology can also be used to recondition previous conditioned waste packages that don’t meet any longer the present acceptance criteria for final disposal. Plasma treatment can result in many cases in a substantial volume reduction, lowering the final disposal costs. This paper covers the unique plasma centrifugal treatment principles and history. It also explains the roles of international partners that blend plasma, off gas treatment and nuclear expertise into one “best developed and available technology” (BDAT) for the treatment of problematic wastes.


Author(s):  
Ulrich Quade ◽  
Thomas Kluth

Since more than 20 years the company Siempelkamp is deeply involved in the field of melting and recycling of radioactively contaminated metals from operation and decommissioning of nuclear installations across Europe. The experience of this long period shows clearly that only a combination of recycling inside the nuclear industry and release for reuse outside the nuclear market will generate the optimum results for the minimisation of radioactive waste volume. Final disposal volume is becoming more and more the status of an own resource within our nuclear business and should be handled very carefully in the future. The paper gives a compact overview about the impressive results of melting treatment, the current potential of the melting plant CARLA and about further developments.


Author(s):  
Kazumi Kitayama

In the year 2000, the Japanese geological disposal program for high-level radioactive waste (HLW) moved from the phase of generic research and development into the phase of implementation. Following legislation entitled the “Specified Radioactive Waste Final Disposal Act” (hereafter “the Act”), the Nuclear Waste Management Organization of Japan (NUMO) was established as the implementing organization in October 2000. The assigned activities of NUMO include repository site selection, developing relevant license applications and construction, operation and closure of the repository. To initiate the first stage, NUMO has chosen an “open solicitation” approach for finding candidate sites in the belief that the support of local communities is essential to the success of this highly public, long-term project extending over more than a century. Based on this concept, NUMO announced the start of open solication for volunteer municipalities for selection of Preliminary Investigation Areas to the public on December 19, 2002. This paper describes NUMO’s open solicitation of volunteer municipalities for a potential disposal site.


Sign in / Sign up

Export Citation Format

Share Document