scholarly journals Ensemble Forecasting of Volcanic Emissions in Hawai’i

2015 ◽  
Vol 57 ◽  
Author(s):  
Andre Kristofer Pattantyus ◽  
Steven Businger

<div class="page" title="Page 1"><div class="section"><div class="layoutArea"><div class="column"><p><span>Deterministic model forecasts do not convey to the end users the forecast uncertainty the models possess as a result of physics parameterizations, simplifications in model representation of physical processes, and errors in initial conditions. This lack of understanding leads to a level of uncertainty in the forecasted value when only a single deterministic model forecast is available. Increasing computational power and parallel software architecture allows multiple simulations to be carried out simultaneously that yield useful measures of model uncertainty that can be derived from ensemble model results. The Hybrid Single Particle Lagrangian Integration Trajectory and Dispersion model has the ability to generate ensemble forecasts. A meteorological ensemble was formed to create probabilistic forecast products and an ensemble mean forecast for volcanic emissions from the Kilauea volcano that impacts the state of Hawai’i. The probabilistic forecast products show uncertainty in pollutant concentrations that are especially useful for decision-making regarding public health. Initial comparison of the ensemble mean forecasts with observations and a single model forecast show improvements in event timing for both sulfur dioxide and sulfate aerosol forecasts. </span></p></div></div></div></div><p> </p>

2020 ◽  
Vol 148 (3) ◽  
pp. 1177-1203 ◽  
Author(s):  
Nicholas A. Gasperoni ◽  
Xuguang Wang ◽  
Yongming Wang

Abstract A gridpoint statistical interpolation (GSI)-based hybrid ensemble–variational (EnVar) scheme was extended for convective scales—including radar reflectivity assimilation—and implemented in real-time spring forecasting experiments. This study compares methods to address model error during the forecast under the context of multiscale initial condition error sampling provided by the EnVar system. A total of 10 retrospective cases were used to explore the optimal design of convection-allowing ensemble forecasts. In addition to single-model single-physics (SMSP) configurations, ensemble forecast experiments compared multimodel (MM) and multiphysics (MP) approaches. Stochastic physics was also applied to MP for further comparison. Neighborhood-based verification of precipitation and composite reflectivity showed each of these model error techniques to be superior to SMSP configurations. Comparisons of MM and MP approaches had mixed findings. The MM approach had better overall skill in heavy-precipitation forecasts; however, MP ensembles had better skill for light (2.54 mm) precipitation and reduced ensemble mean error of other diagnostic fields, particularly near the surface. The MM experiment had the largest spread in precipitation, and for most hours in other fields; however, rank histograms and spaghetti contours showed significant clustering of the ensemble distribution. MP plus stochastic physics was able to significantly increase spread with time to be competitive with MM by the end of the forecast. The results generally suggest that an MM approach is best for early forecast lead times up to 6–12 h, while a combination of MP and stochastic physics approaches is preferred for forecasts beyond 6–12 h.


2019 ◽  
Vol 35 (2) ◽  
pp. 507-521
Author(s):  
Dan-Bi Lee ◽  
Hye-Yeong Chun ◽  
Jung-Hoon Kim

Abstract To test more consistent and reliable upper-level turbulence forecasts, seven global numerical weather prediction (NWP) model outputs are used to construct the multimodel-based ensemble forecasts for clear-air turbulence (CAT). We used the updated version of the well-known Ellrod index, the Ellrod–Knox index (EKI), which is currently an operational CAT diagnostic for the significant weather chart at one of the World Area Forecast Centers. In this study, we tested two types of ensemble forecasts. First is an ensemble mean of all EKI forecasts from the NWP models. Second is a probabilistic forecast that is computed by counting how many individual EKI values from the seven NWP models exceed a certain EKI threshold at each grid point. Here, to calibrate the best EKI thresholds for the moderate-or-greater CAT intensity, the individual EKI thresholds, which vary depending on the resolutions and configurations of the NWP models, are selected using the 95th, 98th, and 98th percentiles of the probability density functions for the EKIs derived from the seven NWP models for a 6-month period. Finally, performance skills of both the ensemble mean and probabilistic forecasts are evaluated against the observations of in situ aircraft eddy dissipation rate and pilot reports. As a result, the ensemble mean forecast shows a better performance skill than the individual EKI forecasts. The reliability diagram for the probabilistic forecast gives a better reliability when using high-percentile EKI values as the threshold although it still suffers overestimation of CAT events likely due to the lack of observation and ensemble spreads.


2018 ◽  
Vol 57 (4) ◽  
pp. 1011-1019 ◽  
Author(s):  
H. F. Dacre ◽  
N. J. Harvey

ABSTRACTVolcanic ash poses an ongoing risk to safety in the airspace worldwide. The accuracy with which volcanic ash dispersion can be forecast depends on the conditions of the atmosphere into which it is emitted. In this study, meteorological ensemble forecasts are used to drive a volcanic ash transport and dispersion model for the 2010 Eyjafjallajökull eruption in Iceland. From analysis of these simulations, the authors determine why the skill of deterministic-meteorological forecasts decreases with increasing ash residence time and identify the atmospheric conditions in which this drop in skill occurs most rapidly. Large forecast errors are more likely when ash particles encounter regions of large horizontal flow separation in the atmosphere. Nearby ash particle trajectories can rapidly diverge, leading to a reduction in the forecast accuracy of deterministic forecasts that do not represent variability in wind fields at the synoptic scale. The flow‐separation diagnostic identifies where and why large ensemble spread may occur. This diagnostic can be used to alert forecasters to situations in which the ensemble mean is not representative of the individual ensemble‐member volcanic ash distributions. Knowledge of potential ensemble outliers can be used to assess confidence in the forecast and to avoid potentially dangerous situations in which forecasts fail to predict harmful levels of volcanic ash.


2017 ◽  
Vol 32 (3) ◽  
pp. 1057-1078 ◽  
Author(s):  
Steven J. Greybush ◽  
Seth Saslo ◽  
Richard Grumm

Abstract The ensemble predictability of the January 2015 and 2016 East Coast winter storms is assessed, with model precipitation forecasts verified against observational datasets. Skill scores and reliability diagrams indicate that the large ensemble spread produced by operational forecasts was warranted given the actual forecast errors imposed by practical predictability limits. For the 2015 storm, uncertainties along the western edge’s sharp precipitation gradient are linked to position errors of the coastal low, which are traced to the positioning of the preceding 500-hPa wave pattern using the ensemble sensitivity technique. Predictability horizon diagrams indicate the forecast lead time in terms of initial detection, emergence of a signal, and convergence of solutions for an event. For the 2016 storm, the synoptic setup was detected at least 6 days in advance by global ensembles, whereas the predictability of mesoscale features is limited to hours. Convection-permitting WRF ensemble forecasts downscaled from the GEFS resolve mesoscale snowbands and demonstrate sensitivity to synoptic and mesoscale ensemble perturbations, as evidenced by changes in location and timing. Several perturbation techniques are compared, with stochastic techniques [the stochastic kinetic energy backscatter scheme (SKEBS) and stochastically perturbed parameterization tendency (SPPT)] and multiphysics configurations improving performance of both the ensemble mean and spread over the baseline initial conditions/boundary conditions (IC/BC) perturbation run. This study demonstrates the importance of ensembles and convective-allowing models for forecasting and decision support for east coast winter storms.


2021 ◽  
Author(s):  
Stéphanie Leroux ◽  
Jean-Michel Brankart ◽  
Aurélie Albert ◽  
Jean-Marc Molines ◽  
Laurent Brodeau ◽  
...  

&lt;p&gt;In this contribution, we investigate the predictability properties of the ocean dynamics using an ensemble of medium range numerical forecasts. This question is particularly relevant for ocean dynamics at small scales (&lt; 30 km), where sub-mesoscale dynamics is responsible for the fast evolution of ocean properties. Relatively little is known about the predictability properties of a high resolution model, and hence about the accuracy and resolution that is needed from the observation system used to generate the initial conditions.&lt;/p&gt;&lt;p&gt;A kilometric-scale regional configuration of NEMO for the Western Mediterranean (MEDWEST60, at 1/60&amp;#186; horizontal resolution) has been developed, using boundary conditions from a larger&amp;#160; North Atlantic configuration at same resolution (eNATL60). This deterministic model has then been transformed into a probabilistic model by introducing innovative stochastic parameterizations of model uncertainties resulting from unresolved processes. The purpose is here primarily to generate ensembles of&amp;#160; model states to initialize predictability experiments. The stochastic parameterization is also applied to assess the possible impact of irreducible model uncertainties on the skill of the forecast. A set of three ensemble experiments (20 members and 2 months ) are performed, one&amp;#160; with the deterministic model initiated with perturbed initial conditions, and two with the stochastic model, for two different amplitudes of model uncertainty. In all three experiments, the spread of the ensemble is shown to emerge from the small scales (10 km wavelength) and progressively upscales to the largest structures. After two months, the ensemble variance saturates over most of the spectrum (except in the largest scales), whereas the small scales (&lt; 30 km) are fully decorrelated between the different members. These ensemble simulations are thus appropriate to provide a statistical description of the dependence between initial accuracy and forecast accuracy over the full range of potentially-useful forecast time-lags (typically, between 1 and 20 days).&amp;#160;&amp;#160;&amp;#160;&lt;/p&gt;&lt;p&gt;The predictability properties are statistically assessed using a cross-validation algorithm (i.e. using alternatively each ensemble member as the reference truth and the remaining 19 members as the ensemble forecast) together with a specific score to characterize the initial and forecast accuracy. From the joint distribution of initial and final scores, it is then possible to quantify the probability distribution of the forecast score given the initial score, or reciprocally to derive conditions on the initial accuracy to obtain a target forecast skill. In this contribution, the misfit between ensemble members is quantified in terms of overall accuracy (CRPS score), geographical position of the ocean structures (location score), and&amp;#160; spatial spectral decorrelation of the Sea Surface Height 2-D fields (spectral score). For example, our results show that, in the region and period&amp;#160; of interest, the initial location accuracy required (necessary condition) with a perfect model (deterministic) to obtain a location accuracy of the forecast of 10 km with a 95% confidence is about 8 km for a 1-day forecast, 4 km for a 5-day forecast, 1.5 km for a 10-day forecast, and this requirement cannot be met with a 15-day or longer forecast.&lt;/p&gt;


2020 ◽  
Vol 148 (7) ◽  
pp. 2645-2669
Author(s):  
Craig S. Schwartz ◽  
May Wong ◽  
Glen S. Romine ◽  
Ryan A. Sobash ◽  
Kathryn R. Fossell

Abstract Five sets of 48-h, 10-member, convection-allowing ensemble (CAE) forecasts with 3-km horizontal grid spacing were systematically evaluated over the conterminous United States with a focus on precipitation across 31 cases. The various CAEs solely differed by their initial condition perturbations (ICPs) and central initial states. CAEs initially centered about deterministic Global Forecast System (GFS) analyses were unequivocally better than those initially centered about ensemble mean analyses produced by a limited-area single-physics, single-dynamics 15-km continuously cycling ensemble Kalman filter (EnKF), strongly suggesting relative superiority of the GFS analyses. Additionally, CAEs with flow-dependent ICPs derived from either the EnKF or multimodel 3-h forecasts from the Short-Range Ensemble Forecast (SREF) system had higher fractions skill scores than CAEs with randomly generated mesoscale ICPs. Conversely, due to insufficient spread, CAEs with EnKF ICPs had worse reliability, discrimination, and dispersion than those with random and SREF ICPs. However, members in the CAE with SREF ICPs undesirably clustered by dynamic core represented in the ICPs, and CAEs with random ICPs had poor spinup characteristics. Collectively, these results indicate that continuously cycled EnKF mean analyses were suboptimal for CAE initialization purposes and suggest that further work to improve limited-area continuously cycling EnKFs over large regional domains is warranted. Additionally, the deleterious aspects of using both multimodel and random ICPs suggest efforts toward improving spread in CAEs with single-physics, single-dynamics, flow-dependent ICPs should continue.


2016 ◽  
Vol 144 (5) ◽  
pp. 1887-1908 ◽  
Author(s):  
Jeffrey D. Duda ◽  
Xuguang Wang ◽  
Fanyou Kong ◽  
Ming Xue ◽  
Judith Berner

The efficacy of a stochastic kinetic energy backscatter (SKEB) scheme to improve convection-allowing probabilistic forecasts was studied. While SKEB has been explored for coarse, convection-parameterizing models, studies of SKEB for convective scales are limited. Three ensembles were compared. The SKMP ensemble used mixed physics with the SKEB scheme, whereas the MP ensemble was configured identically but without using the SKEB scheme. The SK ensemble used the SKEB scheme with no physics diversity. The experiment covered May 2013 over the central United States on a 4-km Weather Research and Forecasting (WRF) Model domain. The SKEB scheme was successful in increasing the spread in all fields verified, especially mid- and upper-tropospheric fields. Additionally, the rmse of the ensemble mean was maintained or reduced, in some cases significantly. Rank histograms in the SKMP ensemble were flatter than those in the MP ensemble, indicating the SKEB scheme produces a less underdispersive forecast distribution. Some improvement was seen in probabilistic precipitation forecasts, particularly when examining Brier scores. Verification against surface observations agree with verification against Rapid Refresh (RAP) model analyses, showing that probabilistic forecasts for 2-m temperature, 2-m dewpoint, and 10-m winds were also improved using the SKEB scheme. The SK ensemble gave competitive forecasts for some fields. The SK ensemble had reduced spread compared to the MP ensemble at the surface due to the lack of physics diversity. These results suggest the potential utility of mixed physics plus the SKEB scheme in the design of convection-allowing ensemble forecasts.


1997 ◽  
Vol 15 (4) ◽  
pp. 476-486 ◽  
Author(s):  
J. Camps ◽  
J. Massons ◽  
M. R. Soler ◽  
E. C. Nickerson

Abstract. A three-dimensional meteorological model and a Lagrangian particle dispersion model are used to study the effects of a uniform large-scale wind on the dispersion of a non-reactive pollutant in a coastal region with complex terrain. Simulations are carried out both with and without a background wind. A comparison between model results and measured data (wind and pollutant concentrations) indicates that the coupled model system provides a useful mechanism for analyzing pollutant dispersion in coastal regions.


2019 ◽  
Vol 147 (5) ◽  
pp. 1699-1712 ◽  
Author(s):  
Bo Christiansen

Abstract In weather and climate sciences ensemble forecasts have become an acknowledged community standard. It is often found that the ensemble mean not only has a low error relative to the typical error of the ensemble members but also that it outperforms all the individual ensemble members. We analyze ensemble simulations based on a simple statistical model that allows for bias and that has different variances for observations and the model ensemble. Using generic simplifying geometric properties of high-dimensional spaces we obtain analytical results for the error of the ensemble mean. These results include a closed form for the rank of the ensemble mean among the ensemble members and depend on two quantities: the ensemble variance and the bias both normalized with the variance of observations. The analytical results are used to analyze the GEFS reforecast where the variances and bias depend on lead time. For intermediate lead times between 20 and 100 h the two terms are both around 0.5 and the ensemble mean is only slightly better than individual ensemble members. For lead times larger than 240 h the variance term is close to 1 and the bias term is near 0.5. For these lead times the ensemble mean outperforms almost all individual ensemble members and its relative error comes close to −30%. These results are in excellent agreement with the theory. The simplifying properties of high-dimensional spaces can be applied not only to the ensemble mean but also to, for example, the ensemble spread.


Sign in / Sign up

Export Citation Format

Share Document