scholarly journals Distribution and Alteration of Mating Type of Phytophthora capsici Population from Red Pepper in Korea

2002 ◽  
Vol 30 (2) ◽  
pp. 152-156 ◽  
Author(s):  
Jeong-Young Song ◽  
Sung-Joon Yoo ◽  
Hong-Gi Kim
2017 ◽  
Vol 142 (4) ◽  
pp. 260-264
Author(s):  
Ping Li ◽  
Dong Liu ◽  
Min Guo ◽  
Yuemin Pan ◽  
Fangxin Chen ◽  
...  

Sexual reproduction in the plant parasite Phytophthora capsici Leonian requires the interaction of two distinct mating types, A1 and A2. Co-occurrence of these mating types can enhance the genetic diversity of P. capsici and alter its virulence or resistance characteristics. Using an intersimple sequence repeat (ISSR) screen of microsatellite diversity, we identified, cloned, and sequenced a novel 1121-base pair (bp) fragment specific to the A1 mating type of P. capsici. Primers Pcap-1 and Pcap-2 were designed from this DNA fragment to specifically detect the A1 mating type. Polymerase chain reaction (PCR) using these primers amplified an expected 997-bp fragment from known A1 mating types, but yielded a 508-bp fragment from known A2 mating types. This PCR-based assay could be adapted to accurately and rapidly detect the co-occurrence of A1 and A2 P. capsici mating types from field material.


Plant Disease ◽  
2006 ◽  
Vol 90 (9) ◽  
pp. 1135-1142 ◽  
Author(s):  
C. Silvar ◽  
F. Merino ◽  
J. Díaz

Phytophthora crown rot, caused by Phytophthora capsici, is potentially the most destructive disease of pepper in Spain. Phenotypic and genetic diversity of 16 P. capsici isolates collected from 11 farms in northwest Spain was characterized based on virulence, mating type, sensitivity to metalaxyl, and genetic analysis using random amplified polymorphic DNA (RAPD) methods. Low variability was observed among the isolates in their metalaxyl response, with 87.5% being highly sensitive. No isolates of the A2 mating type were detected. More variability was found in the virulence assay, and isolates were classified into two groups according to their pathogenicity on a set of four pepper cultivar differentials. Genetic variation examined with eight RAPD primers generated 92 polymorphic bands and revealed the existence of different patterns among isolates. Cluster analysis using the unweighted pair-group method with arithmetic averages (UPGMA) separated the Spanish isolates into three RAPD groups and established a relationship between the Spanish population and a representative worldwide group of isolates. No correlation was found between groups obtained by RAPD analysis and groups defined by virulence or metalaxyl response.


2005 ◽  
Vol 51 (11) ◽  
pp. 934-940 ◽  
Author(s):  
Yu-Huan Gu ◽  
Wen-Hsiung Ko

When protoplasts carrying metalaxyl-resistant (Mr) nuclei from the A1 isolate of Phytophthora parasitica were fused with protoplasts carrying chloroneb-resistant (Cnr) nuclei from the A2 isolate of the same species, fusion products carrying Mr nuclei were either the A2 or A1A2 type, while those carrying Cnr nuclei were the A1, A2, or A1A2 type. Fusion products carrying Mr and Cnr nuclei also behaved as the A1, A2, or A1A2 type. The result refutes the hypothesis that mating types in Phytophthora are controlled by nuclear genes. When nuclei from the A1 isolate of P. parasitica were fused with protoplasts from the A2 isolate of the same species and vice versa, all of the nuclear hybrids expressed the mating type characteristics of the protoplast parent. The same was true when the nuclei from the A1 isolate of P. parasitica were fused with the protoplasts from the A0 isolate of Phytophthora capsici and vice versa. These results confirm the observation that mating type genes are not located in the nuclei and suggest the presence of mating type genes in the cytoplasms of the recipient protoplasts. When mitochondria from the A1 isolate of P. parasitica were fused with protoplasts from the A2 isolate of the same species, the mating type of three out of five regenerated protoplasts was changed to the A1 type. The result demonstrated the decisive effect of mitochondrial donor sexuality on mating type characteristics of mitochondrial hybrids and suggested the presence of mating type genes in mitochondria. All of the mitochondrial hybrids resulting from the transfer of mitochondria from the A0 isolate of P. capsici into protoplasts from the A1 isolate of P. parasitica were all of the A0 type. The result supports the hypothesis of the presence of mating type genes in mitochondria in Phytophthora.Key words: mating type, mitochondrial gene, Phytophthora parasitica, Phytophthora capsici.


2016 ◽  
Author(s):  
Maryn O. Carlson ◽  
Elodie Gazave ◽  
Michael A. Gore ◽  
Christine D. Smart

AbstractDefining the contributions of dispersal, reproductive mode, and mating system to the population structure of a pathogenic organism is essential to estimating its evolutionary potential. After introduction of the devastating plant pathogen, Phytophthora capsici, into a grower’s field, a lack of aerial spore dispersal restricts migration. Once established, coexistence of both mating types results in formation of overwintering recombinant oospores, engendering persistent pathogen populations. To mimic these conditions, in 2008, we inoculated a field with two P. capsici isolates of opposite mating type. We analyzed pathogenic isolates collected in 2009-13 from this experimental population, using genome-wide single-nucleotide polymorphism markers. By tracking heterozygosity across years, we show that the population underwent a generational shift; transitioning from exclusively F1 in 2009-10; mixed generational in 2011; and ultimately all inbred in 2012-13. Survival of F1 oospores, characterized by heterozygosity excess, coupled with a low rate of selfing, delayed declines in heterozygosity due to inbreeding and attainment of equilibrium genotypic frequencies. Large allele and haplotype frequency changes in specific genomic regions accompanied the generational shift, representing putative signatures of selection. Finally, we identified an approximately 1.6 Mb region associated with mating type determination, constituting the first detailed genomic analysis of a mating type region (MTR) in Phytophthora. Segregation patterns in the MTR exhibited tropes of sex-linkage, where maintenance of allele frequency differences between isolates of opposite mating type was associated with elevated heterozygosity despite inbreeding. Characterizing the trajectory of this experimental system provides key insights into the processes driving persistent, sexual pathogen populations.


Plant Disease ◽  
2002 ◽  
Vol 86 (9) ◽  
pp. 1050-1050 ◽  
Author(s):  
R. L. Wick ◽  
M. B. Dicklow

From 1999 to 2001, a Massachusetts nursery received a number of shipments of Pothos, Epipremnum aureum (Lindl. & André) Bunting, with significant crown, petiole, and leaf rot. The plants were imported from Costa Rica. Sporangia were observed on diseased tissues, and five presumptive isolates of Phytophthora were recovered from infected petioles and stems for species identification. The five isolates were morphologically indistinguishable from each other. Sporangia were produced in water and on V8 juice agar under fluorescent light at 22°C. Mating type was determined by pairing isolates with A1 and A2 mating types of Phytophthora capsici Leonian. Sporangial measurements were taken from water cultures. Determination of caducity, and measurements of pedicels and oospores were taken from V8 agar cultures. Measurements represent an average of 50 observations a single isolate. In water culture, sporangia were borne in umbellate clusters. Sporangium length/breadth was 48.29 and 22.33 μm respectively; length/breadth ratio 2.16. On solid media, sporangia were upright and caducous. The bases of the sporangia were mostly tapered. Pedicel lengths were 22 to 49 μm (average 35 μm). Oogonia had amphigynous antheridia and developed only in the presence of an opposite mating type, and oospores measured 25.74 μm diameter. All five isolates were the A1 mating type. Chlamydospores were absent in V8 and corn meal agar (CMA) cultures. Metalaxyl sensitivity was determined at 0, 0.1, 0.5, and 5 ppm in CMA with five replications. The isolate was completely sensitive to 5 ppm metalaxyl, but grew as well as the controls at 0.1 ppm metalaxyl. Growth response to temperature was determined on V8 agar at 15, 20, 25, 30, and 35°C in five replications. After 4 days, colony diameters at 20, 25, and 30°C were not significantly different (P = 0.01) and colonies filled the 100-mm petri dishes. At 15 and 35°C, average colony diameter was 65.7 and 71.4 mm, respectively. Based on the above characteristics, the isolates were identified as P. capsici. Koch's postulates were carried out on pepper, Capsicum annuum ‘Italia’, squash, Cucurbita pepo ‘Patty Pan’ seedlings, and rooted cuttings of pothos. Pepper and squash seedlings and rooted pothos were transplanted in 4-in. (10 cm) pots containing a soilless growing medium (Metro Mix 360, W.R. Grace, Columbia, MD). Phytophthora cultures were grown on V8 juice agar for 4 days. An agar culture was added to 200 ml of sterile distilled water and briefly blended. Ten milliliters of the resulting mycelial slurry were pipetted in the soil one cm from the crown on two sides of the plant. Controls received no mycelial slurry. Petiole, leaf, and crown rot of pothos developed within 2 weeks following inoculation. Squash and pepper plants did not become diseased. In a second pathogenicity test, a 1-cm-diameter plug of mycelial growth from a V8 agar culture was placed between the stem and petiole of the lowest leaf of pothos cuttings directly after transplanting. Inoculated plants died within 3 days. The development of umbellate clusters of sporangia, sporangial shape, length/breadth ratio, and lack of pathogenicity to pepper suggest that the P. capsici isolated from pothos belong to the CAPB (tropical) subgroup of Mchau and Coffey (2). References: (1) S. S. A. Al-Hedaithy and P. H. Tsao. Mycologia 71:392, 1979. (2) G. R. Mchau. and M. D. Coffey. Mycol. Res. 99:89, 1995.


2019 ◽  
Vol 14 (5) ◽  
pp. 166
Author(s):  
Bahru Rohmah ◽  
Bambang Hadisutrisno ◽  
Dyah Manohara ◽  
Achmadi Priyatmojo

Morphology characters and mating types distribution of Phytophthora capsici from black pepper in Java IslandPepper (Piper nigrum) is one of the most important spice crops in Indonesia.  Recently its production declining due to infection of foot rot disease caused by Phytophthora capsici. This pathogen has two different mating types, namely A1 and A2, in which the presence of opposite two mating types is important for sexual reproduction and formation of oospores. The movement of pepper seedling from one area to another is highly facilitated alteration of  mating type distribution map of P. capsici. The objectives of this research were to determine the morphological characteristics and the spread of mating types of P. capsici in Java. Morphology characters of P. capsici isolates were indicated by variation in sporangial size and shape, as well as types of colony appearance. The length (l) and width (w) of sporangium were in the range of 15.1–76.2 µm and 9.8–44.8 µm, respectively; while the l/w ratio was 1.12–2.27. Mating type assay showed that A2 type was more dominantly found than A1 type. This study found two different mating types present in the same area, i.e. Regency of Pacitan (East Java) and Regency of Sleman (Special Region of Yogyakarta). The findings of this research suggested that it is required more strict control strategy on the mobilization of black pepper seedling particularly in the area where the certain mating type is not found yet so that the emergence of new more virulent genotype of pathogen can be prevented.


Plant Disease ◽  
2005 ◽  
Vol 89 (2) ◽  
pp. 191-197 ◽  
Author(s):  
S. Z. Islam ◽  
M. Babadoost ◽  
K. N. Lambert ◽  
A. Ndeme ◽  
H. M. Fouly

This study was conducted to investigate pathogenic, morphologic, and genetic variations among Phytophthora capsici isolates from processing pumpkin (Cucurbita moschata) fields in Illinois. Random amplified polymorphic DNA (RAPD) markers were employed to assess genetic variation among 24 isolates of P. capsici from 10 individual fields at six locations. Unweighted mean pair group analysis clustered isolates into six groups. The genetic distances ranged from 0.03 to 0.45. Inoculation of pumpkin seedlings in the greenhouse revealed that the isolates belonged to six distinct genetic groups differing significantly (P = 0.05) in virulence. Isolates tested exhibited four growth patterns in culture: cottony, rosaceous, petaloid, and stellate. P. capsici isolates, including an ATCC isolate (ATCC-15427), with cottony growth pattern did not grow at 36°C. The mean oospore diameter of A1 mating type isolates was greater than that of A2 mating type isolates. Nine of 24 isolates tested produced chlamydospores in V8-CaCO3 liquid medium.


2013 ◽  
Vol 103 (9) ◽  
pp. 920-926 ◽  
Author(s):  
Jian Hu ◽  
Zhili Pang ◽  
Yang Bi ◽  
Jingpeng Shao ◽  
Yongzhao Diao ◽  
...  

Phytophthora capsici causes significant loss to pepper production in China, and our objective was to investigate the population structure in Gansu province. Between 2007 and 2011, 279 isolates were collected from pepper at 24 locations. Isolates (or subsets) were assessed for simple sequence repeat (SSR) genotype, metalaxyl resistance, mating type, and physiological race using cultivars from the World Vegetable Center (AVRDC) and New Mexico recombinant inbred lines (NMRILs). The A1 and A2 mating types were recovered from nine locations and metalaxyl-resistant isolates from three locations. A total of 104 isolates tested on the AVRDC panel resolved five physiological races. None of 42 isolates tested on the NMRIL panel caused visible infection. SSR genotyping of 127 isolates revealed 59 unique genotypes, with 42 present as singletons and 17 having 2 to 13 isolates. Isolates with identical genotypes were recovered from multiple sites across multiple years and, in many cases, had different race types or metalaxyl sensitivities. Isolates clustered into three groups with each group having almost exclusively the A1 or A2 mating type. Overall it appears long-lived genetically diverse clonal lineages are dispersed across Gansu, outcrossing is rare, and functionally important variation exists within a clonal framework.


Sign in / Sign up

Export Citation Format

Share Document