scholarly journals Arsenic Removal from Water Using Various Adsorbents: Magnetic Ion Exchange Resins, Hydrous Ion Oxide Particles, Granular Ferric Hydroxide, Activated Alumina, Sulfur Modified Iron, and Iron Oxide-Coated Microsand

2011 ◽  
Vol 16 (3) ◽  
pp. 165-173 ◽  
Author(s):  
Shahnawaz Sinha ◽  
Gary Amy ◽  
Yeo-Min Yoon ◽  
Nam-Guk Her
2019 ◽  
Vol 23 (4) ◽  
pp. 20-24
Author(s):  
M.S. Palamarchuk ◽  
E.A. Tokar ◽  
M.V. Tutov ◽  
A.M. Yegorin

Simulation of iron oxide (magnetite and maghemite) and aluminosilicate (sillimanite and cyanite) deposits formed on the surface of spent ionexchange resins in the process of decontamination of liquid radioactive waste contaminated by cesium and cobalt radionuclides has been performed. A method of deep deactivation of spent ion-exchange resins contaminated by aluminosilicate and iron oxide deposits using alkaline and acidic solutions containing Zn-EDTA complexes has been suggested. The method of two-stage concentrating of cesium radionuclides using selective sorption materials (resorcinol-formaldehyde resin and Thermoxid-35 ferrocyanide sorbent) has been improved. The method advantage consists in using a solution containing EDTA complexes for elution of cesium radionuclides from the resorcinol-formaldehyde resin with their transition onto Thermoxid-35. High stability of the resorcinol-formaldehyde resin and Thermoxid-35 in the course of concentrating has been demonstrated. A scheme of deactivation of spent ion-exchange resins, which enables one to decrease the volume of secondary wastes due to utilization of a circulating water supply, has been suggested.


Author(s):  
Priyabrata Mondal ◽  
Pankaj Kumar Roy ◽  
Nil Sadhan Mondal ◽  
Saurabh Kumar Basak ◽  
Arunabha Majumder

Contamination of drinking water due to the presence of as has become a global environmental and socio-economic threat. The appearance of high Arsenic (As) in drinking water causes a serious health issue around the world. Many countries in different parts of the world have reported high arsenic concentrations. Among all groundwater arsenic contamination affected countries, the position of Bangladesh is the worst. Therefore, it is very important to develop affordable and efficient techniques to remove As from drinking water to protect human health. The most used methods are oxidation, coagulation, adsorption, ion exchange, and membrane technologies. Oxidation is usually used as pretreatment for most of the methods. Coagulation is the most common arsenic mitigation technology in Bangladesh. This technique is effective from pH 6-8. Ion exchange resins can only remove arsenate. Activated alumina beds work best in slightly acidic waters and usually have much longer run times than ion exchange resins. A cost-effective method for mitigation of As from drinking water is the use of low-cost adsorbent. Membrane methods which are more costly than other arsenic mitigation techniques but very effective where very low arsenic levels are required. Providing a safe water source may not possible in some of the arsenic affected regions or sometimes this process becomes very expensive. Mitigation of As from drinking water may be more appropriate in these situations. This paper presents a review of the conventional methods used for mitigation of As from contaminated drinking water.


2004 ◽  
Vol 3 (3) ◽  
pp. 283-291 ◽  
Author(s):  
Carmen Iesan ◽  
Satish S. Bapat ◽  
Bill Fries ◽  
Didi Coman ◽  
Doina Florea

2016 ◽  
Vol 5 (1) ◽  
Author(s):  
Kamalpreet Kaur ◽  
Pranjal Jain ◽  
Amit Sobti ◽  
Amrit Pal Toor

AbstractConsidering the need of applicability of green chemistry in research, a series of heterogeneous catalysts, viz., sulfated iron oxide, zirconia supported tungstophosphoric acid and sulfated zirconia have been synthesized by a solvent-free method. The prepared catalysts were used in the esterification of nonanoic acid with methanol and were compared with ion exchange resins for the assessment of their catalytic performance. Sulfated iron oxide was found to be best with an acid conversion of 83%, which is quite comparable with Amberlyst 15 and Dowex50Wx2. The high catalyst loading, cost, low thermal stability, and long reaction time make ion exchange resins uneconomical to use over other alternatives that result in same efficiency with low cost. Sulfated iron oxide was further optimized for its preparation conditions for high catalytic performance in the esterification reaction. The catalysts were characterized for their crystallinity, surface morphology, composition, weight loss, and structure by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy. The evaluated catalysts were compared on the basis of their preparation time, catalytic performance, catalyst loading, reaction time, and overall cost.


Sign in / Sign up

Export Citation Format

Share Document