scholarly journals Design and function of a nitrogen and sediment removal system in a recirculating aquaculture system optimized for aquaponics

2020 ◽  
Vol 26 (2) ◽  
pp. 190494-0
Author(s):  
Siriwanee Supajaruwong ◽  
Penpicha Satanwat ◽  
Wiboonluk Pungrasmi ◽  
Sorawit Powtongsook

Aquaponic systems (APSs) are based upon the sustainable utilization of nitrogen and phosphorus from a recirculating aquaculture system (RAS) as the nutrient source for plant production. Since the proper management of nitrogen and suspended solids are important for nutrient utilization efficiency, their optimization was evaluated. The RAS integrated with filtration unit and nitrifying biofilter provided complete nitrification without solid accumulation. Under the optimal treatment condition for 16 d, the treated water was low in ammonia (0 mg-N/L) and high in nitrate (> 6 mg-N/L) concentrations, which was appropriate for use in the cultivation of lettuce (Lactuca sativa). The RAS was then incorporated with hydroponics at a 5:1 fish: plant weight ratio. Moreover, the simplified APS was compared with a typical APS system that incorporated filtration unit and nitrifying biofilter. The natural growth of nitrifying microorganisms in the simplified APS could perform complete nitrification after 20 d of operation giving low ammonia and nitrite concentrations. The nutrient removal efficiency of the simplified APS resembled the typical system. During the aquaponics, the hydroponic unit in the aquaculture system was sufficient to control the nutrient concentrations within the appropriate levels for fish cultivation, i.e. nitrate (< 20 mg-N/L) and phosphate (< 3 mg-P/L).

2018 ◽  
Vol 19 (1) ◽  
pp. 37-45
Author(s):  
Woo Jin Lee ◽  
Seon Woo Baek ◽  
Ha Na Seo ◽  
Byeong Wook Kong ◽  
Deog Gwan Ra ◽  
...  

Processes ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1306
Author(s):  
Pedro Almeida ◽  
Laurent Dewasme ◽  
Alain Vande Wouwer

The recirculating aquaculture system (RAS) is a land-based water treatment technology, which allows for farming aquatic organisms, such as fish, by reusing the water in the production (often less than 5%). This technology is based on the use of filters, either mechanical or biological, and can, in principle, be used for any species grown in aquaculture. Due to the low recirculation rate, ammonia accumulates in the system and must be converted into nitrate using nitrification reactors. Although less toxic for fish, nitrate can also be further reduced into nitrogen gas by the use of denitrification biofilters which may create several issues, such as incomplete denitrification, resulting in toxic substances, such as nitrite and nitric oxide, or a waste of carbon source in excess. Control of the added quantity of carbon source in the denitrification biofilter is then mandatory to keep nitrate/nitrite concentrations under toxic levels for fish and in accordance with local effluent regulations, and to reduce costs related to wasted organic carbon sources. This study therefore investigates the application of different control methodologies to a denitrification reactor in a RAS. To this end, a numerical simulator is built to predict the RAS behavior and to allow for the comparison of different control approaches, in the presence of changes in the operating conditions, such as fish density and biofilter removal efficiency. First, a classical proportional-integral-derivative (PID) controller was designed, based on an SIMC tuning method depending on the amount of ammonia excreted by fish. Then, linearizing and cascade controllers were considered as possible alternatives.


Aquaculture ◽  
2019 ◽  
Vol 511 ◽  
pp. 734254
Author(s):  
Shazia N. Aslam ◽  
Sharada Navada ◽  
Gisle R. Bye ◽  
Vasco C. Mota ◽  
Bendik Fyhn Terjesen ◽  
...  

2021 ◽  
Vol 307 ◽  
pp. 113768
Author(s):  
Rodolfo Amthauer ◽  
Francisca Cárdenas ◽  
Alberto Reyes ◽  
Ariel Valenzuela ◽  
Patricio Dantagnan ◽  
...  

1996 ◽  
Vol 15 (5) ◽  
pp. 359-379 ◽  
Author(s):  
Luther G. Wood ◽  
Barnaby J. Watten ◽  
C.Gene Haugh ◽  
George S. Libey ◽  
Theo A. Dillaha

Sign in / Sign up

Export Citation Format

Share Document