scholarly journals The dynamics of HIV infection model with logistic growth and infected cells in eclipse phase

2018 ◽  
Vol 241 ◽  
pp. 01012
Author(s):  
Sanaa Harroudi ◽  
Karam Allali

In this paper, we study a mathematical model of human immunodeficiency virus dynamics with logistic growth and infected cells in eclipse phase. This model describes the interactions between uninfected CD4+ T cells, infected CD4+ T cells in latent stage, productively infected CD4+ T cells and free virus. The positivity and boundedness of solutions for non negative initial data are proved. The stability of disease-free equilibrium and endemic equilibrium are rigorously established. Numerical simulations are also provided to give a more complete representation of the system dynamics.

2016 ◽  
Vol 90 (16) ◽  
pp. 7066-7083 ◽  
Author(s):  
Saikrishna Gadhamsetty ◽  
Tim Coorens ◽  
Rob J. de Boer

ABSTRACTSeveral experiments suggest that in the chronic phase of human immunodeficiency virus type 1 (HIV-1) infection, CD8+cytotoxic T lymphocytes (CTL) contribute very little to the death of productively infected cells. First, the expected life span of productively infected cells is fairly long, i.e., about 1 day. Second, this life span is hardly affected by the depletion of CD8+T cells. Third, the rate at which mutants escaping a CTL response take over the viral population tends to be slow. Our main result is that all these observations are perfectly compatible with killing rates that are much faster than one per day once we invoke the fact that infected cells proceed through an eclipse phase of about 1 day before they start producing virus. Assuming that the major protective effect of CTL is cytolytic, we demonstrate that mathematical models with an eclipse phase account for the data when the killing is fast and when it varies over the life cycle of infected cells. Considering the steady state corresponding to the chronic phase of the infection, we find that the rate of immune escape and the rate at which the viral load increases following CD8+T cell depletion should reflect the viral replication rate, ρ. A meta-analysis of previous data shows that viral replication rates during chronic infection vary between 0.5 ≤ ρ ≤ 1 day−1. Balancing such fast viral replication requires killing rates that are several times larger than ρ, implying that most productively infected cells would die by cytolytic effects.IMPORTANCEMost current data suggest that cytotoxic T cells (CTL) mediate their control of human immunodeficiency virus type 1 (HIV-1) infection by nonlytic mechanisms; i.e., the data suggest that CTL hardly kill. This interpretation of these data has been based upon the general mathematical model for HIV infection. Because this model ignores the eclipse phase between the infection of a target cell and the start of viral production by that cell, we reanalyze the same data sets with novel models that do account for the eclipse phase. We find that the data are perfectly consistent with lytic control by CTL and predict that most productively infected cells are killed by CTL. Because the killing rate should balance the viral replication rate, we estimate both parameters from a large set of published experiments in which CD8+T cells were depleted in simian immunodeficiency virus (SIV)-infected monkeys. This confirms that the killing rate can be much faster than is currently appreciated.


2017 ◽  
Vol 10 (07) ◽  
pp. 1750098 ◽  
Author(s):  
Şuayip Yüzbaşı ◽  
Nurbol Ismailov

In this paper, the human immunodeficiency virus (HIV) infection model of CD[Formula: see text][Formula: see text]T-cells is considered. In order to numerically solve the model problem, an operational method is proposed. For that purpose, we construct the operational matrix of integration for bases of Taylor polynomials. Then, by using this matrix operation and approximation by polynomials, the HIV infection problem is transformed into a system of algebraic equations, whose roots are used to determine the approximate solutions. An important feature of the method is that it does not require collocation points. In addition, an error estimation technique is presented. We apply the present method to two numerical examples and compare our results with other methods.


Author(s):  
A. M. Elaiw ◽  
N. H. AlShamrani

Human immunodeficiency virus (HIV) and human T-lymphotropic virus type I (HTLV-I) are two retroviruses that infect the susceptible CD[Formula: see text]T cells. It is known that HIV and HTLV-I have in common a way of transmission through direct contact with certain body fluids related to infected individuals. Therefore, it is not surprising that a mono-infected person with one of these viruses can be co-infected with the other virus. In the literature, a great number of mathematical models has been presented to describe the within-host dynamics of HIV or HTLV-I mono-infection. However, the within-host dynamics of HIV/HTLV-I co-infection has not been modeled. In this paper, we develop a new within-host HIV/HTLV-I co-infection model. The model includes the impact of Cytotoxic T lymphocytes (CTLs) immune response, which is important to control the progression of viral co-infection. The model describes the interaction between susceptible CD[Formula: see text]T cells, silent HIV-infected cells, active HIV-infected cells, silent HTLV-infected cells, Tax-expressing HTLV-infected cells, free HIV particles, HIV-specific CTLs and HTLV-specific CTLs. We first show the nonnegativity and boundedness of the model’s solutions and then we calculate all possible equilibria. We derive the threshold parameters which govern the existence and stability of all equilibria of the model. We prove the global asymptotic stability of all equilibria by utilizing Lyapunov function and LaSalle’s invariance principle. We have presented numerical simulations to illustrate the effectiveness of our main results. In addition, we discuss the effect of HTLV-I infection on the HIV-infected patients and vice versa.


2019 ◽  
Vol Volume 30 - 2019 - MADEV... ◽  
Author(s):  
Moussa Bachraoui ◽  
Khalid Hattaf ◽  
Noura Yousfi

Modeling by fractional order differential equations has more advantages to describe the dynamics of phenomena with memory which exists in many biological systems. In this paper, we propose a fractional order model for human immunodeficiency virus (HIV) infection by including a class of infected cells that are not yet producing virus, i.e., cells in the eclipse stage. We first prove the positivity and bound-edness of solutions in order to ensure the well-posedness of the proposed model. By constructing appropriate Lyapunov functionals, the global stability of the disease-free equilibrium and the chronic infection equilibrium is established. Numerical simulations are presented in order to validate our theoretical results.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Zhimin Chen ◽  
Xiuxiang Liu ◽  
Liling Zeng

Abstract In this paper, a human immunodeficiency virus (HIV) infection model that includes a protease inhibitor (PI), two intracellular delays, and a general incidence function is derived from biologically natural assumptions. The global dynamical behavior of the model in terms of the basic reproduction number $\mathcal{R}_{0}$ R 0 is investigated by the methods of Lyapunov functional and limiting system. The infection-free equilibrium is globally asymptotically stable if $\mathcal{R}_{0}\leq 1$ R 0 ≤ 1 . If $\mathcal{R}_{0}>1$ R 0 > 1 , then the positive equilibrium is globally asymptotically stable. Finally, numerical simulations are performed to illustrate the main results and to analyze thre effects of time delays and the efficacy of the PI on $\mathcal{R}_{0}$ R 0 .


2018 ◽  
Vol 28 (09) ◽  
pp. 1850109 ◽  
Author(s):  
Xiangming Zhang ◽  
Zhihua Liu

We make a mathematical analysis of an age structured HIV infection model with both virus-to-cell and cell-to-cell transmissions to understand the dynamical behavior of HIV infection in vivo. In the model, we consider the proliferation of uninfected CD[Formula: see text] T cells by a logistic function and the infected CD[Formula: see text] T cells are assumed to have an infection-age structure. Our main results concern the Hopf bifurcation of the model by using the theory of integrated semigroup and the Hopf bifurcation theory for semilinear equations with nondense domain. Bifurcation analysis indicates that there exist some parameter values such that this HIV infection model has a nontrivial periodic solution which bifurcates from the positive equilibrium. The numerical simulations are also carried out.


SeMA Journal ◽  
2017 ◽  
Vol 75 (2) ◽  
pp. 271-283 ◽  
Author(s):  
Kourosh Parand ◽  
Zahra Kalantari ◽  
Mehdi Delkhosh

Author(s):  
Muhammad Umar ◽  
Zulqurnain Sabir ◽  
Fazli Amin ◽  
Juan L. G. Guirao ◽  
Muhammad Asif Zahoor Raja

Sign in / Sign up

Export Citation Format

Share Document